

Shreemati Nathibai Damodar Thackersey Women's University 1, Nathibai Thackersey Road, New Marine Lines, Mumbai-400020, Maharashtra (India)

Program Structure Scheme

For

Post Std 10+2, 4 Year(s) Bachelor Degree Program in

Faculty of Science and Technology

Bachelor Of Technology(B.Tech.)

(Credits System)

(Revised 2019-Regular) Electronics & Communication Program Code: -

Publisher's Note

This Shreemati Nathibai Damodar Thackersey Women's University has great Pleasure in publishing this program structure for Post Std 10+2 program for 4 Year(s) Bachelor Degree Program as "Bachelor Of Technology" (Revised 2019 - Regular) (Electronics & Communication) under the Faculty of "Faculty of Science and Technology".

On behalf of the University, I thank experts and authorities of the University for the interest taken and the whole hearted co-operation extended by them in bringing out this publication.

Date: 12/16/2021 2:16:52 PM Shreemati Nathibai Damodar Thackersey Women's University ,1, Nathibai Thackersey Road, New Marine Lines, Mumbai-400020, Maharashtra (India)

Registrar

Program Objective(s)

The Bachelor Of Technology Consists of following 3 program part(s):

Sr.No.	Program Part Name	Program Part Abbrevation	Examination Pattern
1	First Year	FY	Semester
2	Second Year	SY	Semester
3	Third Year	ΤY	Semester

The Bachelor Of Technology is available in following medium of instruction/s:

1. English

Program Part: FY Separate Passing Head: No, Min: 0, Max: 1050, Total Credits: 38.00

Term: Sem I Separate Passing Head: No, Min Courses: 8, Max Courses: 8, Min:0,Max:450, Total Credits: 17.50

The papers for FY - Sem I are classified into following groups:

1.Compulsory Group (Min Papers: 8, Max Papers: 8, Separate Passing Head: No, Max. Marks: 450) Select minimum 8 paper(s) Select maximum 8 paper(s)				
Papers:				
110011	Applied Science (Physics and Chemistry)			
110012	Mathematics-I			
120011	Basic Electrical Engineering			
120012	Engineering Graphics and Design			
110021	Applied Science Lab			
120021	Basic Electrical Engineering Lab			
120022	Engineering Graphics and Design Lab			
180051	Induction Programme			

Term: Sem II Separate Passing Head: No, Min Courses: 10, Max Courses: 10, Min:0,Max:600, Total Credits: 20.50

The papers for FY - Sem II are classified into following groups:

```
1.Compulsory Group (Min Papers: 10, Max Papers: 10,
Separate Passing Head: No, Max. Marks: 600)
Select minimum 10 paper(s)
Select maximum 10 paper(s)
Papers:
          210011
                        Applied Science (Physics and Chemistry)
          210012
                        Mathematics-II
          220011
                        Programming for Problem Solving
          220012
                        Workshop/Manufacturing Practices
          230011
                        English
          210021
                        Applied Science Lab
                        Programming for Problem Solving Lab
          220021
          220022
                        Workshop/Manufacturing Practices Lab
          230021
                        English Practical
          280011
                        Environmental Sciences
```

Program Part: SY Separate Passing Head: No, Min: 0, Max: 1500, Total Credits: 41.00

Term: Sem III Separate Passing Head: No, Min Courses: 10, Max Courses: 10, Min:0,Max:750, Total Credits: 19.00

The papers for SY - Sem III are classified into following groups:

•		
Papers:		
341211	Electronic Devices (ENC)	
341221	Electronic Devices Lab (ENC)	
341212	Digital System Design (ENC)	
341222	Digital System Design Lab (ENC)	
341214	Computer Architecture (ENC)	
311211	Applied Mathematics (ENC)	
381251	Constitutions of India (ENC)	
391221	Data Structure and Algorithms Lab (ENC)	
341213	Signals and System(ENC)	

2.Optional Group (Min Papers: 1, Max Papers: 1, Separate Passing Head: No, Max. Marks: 50) Select minimum 1 paper(s) Select maximum 1 paper(s) Papers: 331211 Economics for Engineer (ENC) 331212 Women Law (ENC) **Term: Sem IV** Separate Passing Head: No, Min Courses: 10, Max Courses: 10, Min:0,Max:750, Total Credits: 22.00

The papers for SY - Sem IV are classified into following groups:

papers for ST - Sen	TV are classified into following groups.			
Papers:				
441211	Electromagnetic Waves (ENC)			
441221	Electromagnetic Waves Lab (ENC)			
441212	Analog Circuits (ENC)			
441222	Analog Circuits Lab (ENC)			
441213	Microcontrollers (ENC)			
441223	Microcontrolles Lab (ENC)			
441214	Probability Theory and Stochastic Processes (ENC)			
441215	Network Theory (ENC)			
491221	Object Oriented Programming (ENC)			
Papers:				
431211	Creating and Managing IPR/Patenting (ENC)			
431212	Professional Ethics (ENC)			
431213	Critical Thinking (ENC)			
431214	Fundamentals of Management for Engineers (ENC)			

Program Part: TY Separate Passing Head: No, Min: 0, Max: 1550, Total Credits: 48.00

Term: Sem V Separate Passing Head: No, Min Courses: 11, Max Courses: 11, Min:0,Max:750, Total Credits: 20.00

The papers for TY - Sem V are classified into following groups:

```
1.Compulsory Group (Min Papers: 9, Max Papers: 9,
Separate Passing Head: No, Max. Marks: 600)
Select minimum 9 paper(s)
Select maximum 9 paper(s)
Papers:
                         Analog and Digital Communications
          541211
          541221
                         Analog and Digital Communications Lab
          541212
                         Digital Signal Processing
          541222
                         Digital Signal Processing Lab
          541213
                         Control Systems
          541223
                         Electronics Measurement Lab
          531211
                         Effective Technical Communication
          531221
                         Effective Technical Communication Lab
          580011
                         Essence of Indian Traditional Knowledge
2.Elective Group I (Min Papers: 1, Max Papers: 1,
Separate Passing Head: No, Max. Marks: 100)
Select minimum 1 paper(s)
Select maximum 1 paper(s)
Papers:
          550111
                         Embedded System
3.Elective Lab Group I (Min Papers: 1, Max Papers: 1,
Separate Passing Head: No, Max. Marks: 50)
Select minimum 1 paper(s)
Select maximum 1 paper(s)
Papers:
```

550121	Embedded System Lab	

Term: Sem VI Separate Passing Head: No, Min Courses: 11, Max Courses: 11, Min:0,Max:800, Total Credits: 28.00

The papers for TY - Sem VI are classified into following groups:

```
1.Compulsory Group (Min Papers: 5, Max Papers: 5,
Separate Passing Head: No, Max. Marks: 250)
Select minimum 5 paper(s)
Select maximum 5 paper(s)
Papers:
          640111
                        Computer Network
          640121
                        Computer Network Lab
          640122
                        Mini Project
          691221
                        Web Technology Lab / Tutorial
           6912
                        Honours Subject
2.Elective Group II (Min Papers: 1, Max Papers: 1,
Separate Passing Head: No, Max. Marks: 100)
Select minimum 1 paper(s)
Select maximum 1 paper(s)
Papers:
          650111
                        Microwave Theory and Techniques
3.Elective Group III (Min Papers: 1, Max Papers: 1,
Separate Passing Head: No, Max. Marks: 100)
Select minimum 1 paper(s)
Select maximum 1 paper(s)
Papers:
          650112
                        Speech and Audio Processing
          650113
                        Scientific Computing
          650114
                        VLSI Design
4.Open Elective Group I (Min Papers: 1, Max Papers: 1,
Separate Passing Head: No, Max. Marks: 100)
Select minimum 1 paper(s)
Select maximum 1 paper(s)
Papers:
          660111
                        Database Management
          660112
                        Advance Programming
5.Open Elective Group II (Min Papers: 1, Max Papers: 1,
Separate Passing Head: No, Max. Marks: 100)
Select minimum 1 paper(s)
Select maximum 1 paper(s)
Papers:
          660113
                        Internet Of Things
          660114
                        RTOS
6.Open Elective lab Group I (Min Papers: 1, Max Papers: 1,
Separate Passing Head: No, Max. Marks: 50)
Select minimum 1 paper(s)
Select maximum 1 paper(s)
Papers:
          660121
                        Database Management
          660122
                        Advance Programming
7.Open Elective lab Group II (Min Papers: 1, Max Papers: 1,
Separate Passing Head: No, Max. Marks: 100)
Select minimum 1 paper(s)
Select maximum 1 paper(s)
Papers:
          660123
                        Internet Of Things Lab
          660124
                        RTOS Lab
```


Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

SNDT Women's University

(Sndt.digitaluniversity.ac)

Syllabus B. Tech. in Electronics and Communication Engineering

SNDT Women's University

1, NathibaiThackersey Road, Mumbai 400 020 (Applicable to students taking admission in and after 2019)

Credit Definition

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits
2 Hours Practical(Lab)/week	1 credit

Range of credits -

- Credits of 160 for a student to be eligible to get an Undergraduate degree in Electronics and Communication Engineering (ENC).
- A student will be eligible to get an Undergraduate degree with Minor Engineering Degree, if she completes an additional 18 credits. These could be acquired through MOOCs offered at Institutes or approved by the department(Swayam ,NPTELetc) or designed internally or with other agencies in the Institute.
- If the student does not pass the minor degree s subject/subjects the minor degree will not be awarded and no backlog exam for the same will be conducted

Structure of ENC program:

Sr. No	Category	Credits
1	Humanities and Social Sciences including management courses (HSMC)	11
2	Basic Science courses (BSC)	23
3	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc (ESC)	17
4	Professional core courses (EC)	50
5	Professional Elective courses relevant to chosen specialization/branch (ECEL)	21
6	Open subjects – Electives from other technical and /or emerging subjects (OE)	16
7	Project work, seminar and internship in industry or elsewhere	17
8	Professional Skills	5
9	Mandatory Courses [Environmental Sciences, Induction training, Indian Constitution, Essence of Indian Traditional Knowledge]	4 courses
	Total	160

Course code and Definition:

Course Code	Definitions
L	Lecture
Т	Tutorial
Р	Practical
V	Viva
D	Duration of Paper
ТР	Term Paper
TW	Term Work
P/V	Practical/Viva
BSC	Basic Science Courses
ESC	General Engineering Science Courses
HSMC	Humanities and Social Sciences including Management courses
EC	Core courses
ECEL	Program Elective
OE	Open Elective
PS	Professional Skills
МС	Mandatory courses
ECP	Project Stage
MD	Minor Degree

• Basic Science Courses(BSC)

BSC	Name	Hours/Week (L:T:P)	Credit	Sem
	Applied Science (Physics and Chemistry)	3:1:0	4	I
	Mathematics-I	3:1:0	4	I
	Applied Science Lab	0:0:3	1.5	Ι
	Applied Science (Physics and Chemistry)	3:1:0	4	Π
	Applied Science Lab	0:0:3	1.5	П
	Mathematics-I	3:1:0	4	Π
	Applied Mathematics	3:1:0	4	ш
Total Credits			23	3

• General Engineering Science Courses (ESC)

ESC	Name	Hours/Week (L:T:P)	Credit	Sem
	Basic Electrical Engineering	3:1:0	4	Ι
	Basic Electrical Engineering Lab	0:0:2	1	Ι
	Engineering Graphics and Design	1:0:0	1	Ι
	Engineering Graphics and Design Lab	0:0:4	2	Ι
	Programming for Problem Solving	3:0:0	3	Π
	Programming for Problem Solving Lab	0:0:4	2	Π
	Workshop/Manufacturing Practices	1:0:0	1	Π
	Workshop/Manufacturing Practices Lab	0:0:4	2	Π
	Visualization and Design Thinking (MOOC)	1:0:0	1	VIII
	Total Credits			7

• Humanities and Social Sciences Including Management courses (HSMC)

HSMC	Name	Hours/Week (L:T:P)	Credit	Sem	
HSMC-101	English*	2:0:0	2	Π	
	English Practical*	0:0:2	1	Π	
HSMC-02	Women Law *	1:0:0	1	III	
(MOOC)	Economics for Engineers*	1:0:0			
HSMC-03	Creating and Managing IPR	2:0:0	2	IV	
(MOOC)	Professional Ethics*	2:0:0			
	Fundamentals of Management for Engineers*	2:0:0			
	Effective Technical Communication *	3:0:0	3	V	
	Effective Technical Communication Lab*	0:0:2	1		
	Disaster Management	1:0:0	1	VII	
	Total Credits 11				

* Comman for Electronics Engineering and Electronics and CommunicationCourse

- Any one course to be selected from HSMC-02 and HSMC-03
- Core Courses (EC)

Core Course ID	Name	Hours/Week (L:T:P)	Credit	Sem
	Electronic Devices*	3:0:0	3	III
	Electronic Devices Lab*	0:0:2	1	III
	Digital System Design*	3:0:0	3	III
	Digital System Design Lab*	0:0:2	1	III

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Signals and Systems*	3:0:0	3	III
Computer Architecture*	3:0:0	3	III
Electromagnetic Waves*	3:0:0	3	IV
Electromagnetic Waves Labs*	0:0:2	1	IV
Analog Circuits*	3:0:0	3	IV
Analog Circuits Lab*	0:0:2	1	IV
Microcontrollers*	3:0:0	3	IV
Microcontrollers Lab*	0:0:2	1	IV
Network Theory*	3:0:0	3	IV
Probability Theory and Stochastic Processes *	3:0:0	3	IV
Analog and Digital Communication*	3:0:0	3	V
Analog and Digital Communication Lab*	0:0:2	1	V
Digital Signal Processing*	3:0:0	3	V
Digital Signal Processing Lab*	0:0:2	1	V
Control Systems*	3:0:0	3	V
Electronic Measurement Lab*	0:0:2	1	V
Computer Network	3:0:0	3	VI
Computer Network Lab	0:0:2	1	VI
Mini Project *	0:0:4	2	VI

Total

50

Subject : Syllabus for Electronics and Communication Engineering

•	Professional Elective Courses (E	CEL)

ECEL Course ID	Name	Hours Per Week L:T:P	Credit	Sem
	Embedded System	3:0:0	3	V
	Embedded System Lab	0:0:2	1	V
ECEL-I	Speech and Audio Processing	3:0:0	3	VI
(Select One)	Scientific Computing	3:0:0		
	VLSI Design	3:0:0		
	Microwave Theory and Techniques	3:0:0	3	VI
	Information Coding and Security	3:0:0	3	VII
	Information Coding and Security Tutorial	0:1:0	1	VII
	Mobile Communications and WSN	3:0:0	3	VII
	Mobile Communications and WSN Lab	0:0:2	1	VII
	Fiber Optic Communication	3:0:0	3	VII
	Total Credits			

- The actual list of electives will depend on the availability of faculty and their research • interests.
- **Open Electives (OE)** •

OE	Professional Skills	Hours/Week (L:T:P)	Credits	Sem
OE-I (Select	Database Management	3:0:0	3	VI
any one)	Advance Programing			

Subject : Syllabus for Electronics and Communication Engineering

OE-I Lab (Select any	Database Management Lab	0:0:2	1	VI
one)	Advance Programing			
OE-II	Internet of Things	3:0:0	3	VI
(Select any one)	RTOS			
OE-II Lab	Internet of Things Lab	0:0:2	1	VI
(Select any one)	RTOS Lab			
OE-III	Artificial Intelligence	3:0:0	3	VII
(Select any one)	Computer Vision			
	Cloud Robotics			
OE-III Lab (Select any	Artificial Intelligence	0:0:2	1	VII
one)	Computer Vision			
	Cloud Robotics			
OE-IV (Select any	Machine Learning	3:0:0	3	VII
one)	Big Data Analysis			
	Cybersecurity and Forensics			
OE-IV Lab(Select	Machine Learning Lab	0:0:2	1	VII
any one)	Big Data Analysis Lab			
	Cybersecurity and Forensics Lab			
	Total Credits		16	

- The actual list of electives will depend on the availability of faculty and their research interests.
- Professional Skills (PS)

PS	Professional Skills	Hours/Week (L:T:P)	Credits	Sem
	Data Structure	0:0:2	1	ш
	Object Oriented Programing	0:1:2	2	IV

Subject : Syllabus for Electronics and Communication Engineering

Web Technology	0:1:2	2	VI
Total Credits		5	

• MandatoryCourses

MC Course ID	Mandatory Courses	Hours Per Week L:T:P	Credits	Sem
	Induction Program		0	I
	Environmental Science		0	Π
	Constitution of India	1:0:0	0	Ш
	Essence of indian Traditional Knowledge	1:0:0	0	V

Semester V

Category	Course Title	Hours	/Weel	K	Cr	Cr D		D	ТР	TW	P/V	Total
		L	Т	Р								
EC	Analog and Digital Communication *	3	-	-	3	2.5	75	25	-	100		
EC	Analog and Digital Communication Lab *	-	-	2	1	-	25	25	P&V	50		
EC	Digital Signal Processing*	3	-	-	3	2.5	75	25	-	100		
EC	Digital Signal Processing Lab*	-	-	2	1	-	25	25	-	50		
EC	Control Systems*	3	-	-	3	2.5	75	25	-	100		
EC	Electronic Measurement Lab*	-	-	2	1	-	25	25	-	50		
ECEL	Embedded System	3	-	-	3	2.5	75	25	-	100		
ECEL	Embedded System Lab	-	-	2	1	-	25	25	P&V	50		
HSMC	Effective Technical Communication *	3	-	-	3	1.5	50	-	-	50		
HSMC	Effective Technical Communication Lab *	-	-	2	1	-	-	50	-	50		
MC	Essence of Indian Traditional Knowledge ^{*#\$} (MOOC)	1	-	-	0	-	25	25	-	50		
MD	Minor Degree Subject	3	1	-	4							
	Total	19	@1	10	20 @4					750@		

[#] - Passing in this subject is Mandatory

* - Common for Electronics Engineering Course

⁸ Humanities Elective: \$MOOC/swayam Based courses on the following lines has to be completed . Certificate has to be provided by individual students to get evaluated. Evaluation marking given above.

Semester VI

Category	Course Title	Hours	/Weel	K	Cr	D	ТР	тw	P/V	Total
		L	Т	Р						
EC	Computer Network	3	-	-	3	2.5	75	25	-	100
EC	Computer Network Lab	-	-	2	1	-	25	25	P&V	50
ECEL	Microwave Theory and Techniques	3	-	-	3	2.5	75	25	-	100
ECEL	ECEL-I	3	-	-	3	2.5	75	25	-	100
OE	OE-I	3	-	-	3	2.5	75	25	-	100
OE	OE-I Lab	-	-	2	1	-	25	25	-	50
OE	OE-II	3	-	-	3	2.5	75	25	-	100
OE	OE-II Lab	-	-	2	1	-	25	25	P&V	50
EC	Mini Project *	-	-	4	2	-	25	25	P&V	50
PS	Web Technology Lab/Tutorial	-	1	2	2	-	25	25	P&V	50
MD	Minor Degree Subject [@]	3	-	2	4					
	Total	15 @3	1	14	22 @4					750@

* - Common for Electronics Engineering Course

[@]- Honourscourse

<u>Pogram</u>

Sr.No	ECEL-I
1	Speech and Audio Processing
2	Scientific Computing
3	VLSI Design

Elective

Den Elective List

Faculty : Technology (Undergraduate Course) -BTech
Subject : Syllabus for Electronics and Communication Engineering

Sr.No	OEI	OEII
1	Database Management	Internet of Things
2	Advance Programing	RTOS

Minor Degree Course

Students can choose AIML (MD2) or Data Science (MD7) as a minor degree course.

Sr.No	Minor Degree			
MD 1	Introduction toAI&MachineLearning			
MD 2	Introduction toDataAnalytics			
MD 3	DeepLearningandNeuralNetwork			
MD 4	SpecialtopicsinArtificialIntelligence			
MD 5	Applications of AI			
MD 6	Introduction toDataScience			
MD 7	Introduction toAlandML			
MD 8	ComputationalData analytics			
MD 9	WebDataMining			
MD 10	Analysing,VisualizingandApplyingdatasciencewithpython			

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University

Proposed in 2020

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

<u>SHA MITTAL INSTITUTE OF TECHNOLOGY</u> SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Semester V

Course code									
Category	EC	EC							
Course title	Ana	log a	nd Di	igital Co	mmunication(Theory & Lab.)				
Scheme and Credits	L	Т	Р	Credit	Semester V				
	3	0	2	4					

<u>SHA MITTAL INSTITUTE OF TECHNOLOGY</u> SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Pre-requisites (if any)	-
Course Objective	 The students will be able to Acquire knowledge about physics of basic semiconductor devices Understand different electronic devices Analyse characteristic of different semiconductor devices Knowledge about advanced semiconductor devices and their applications
Course Outcomes	 At the end of this course students will demonstrate the ability to Analyze and compare different analog modulation schemes for their efficiency and bandwidth Analyze the behavior of a communication system in presence of noise Investigate pulsed modulation system and analyze their system performance Analyze different digital modulation schemes and can compute the bit error performance

Mo dul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Review of signals and systems, Frequency domain representation of signals, Principles of AmplitudeModulation Systems- DSB, SSB and VSB modulations. Angle Modulation, Representation of FM and PM signals, Spectral characteristics of angle modulated signals.	10	33 %
Π	1	Review of probability and random process. Gaussian and white noise characteristics,Noise in amplitude modulation systems, Noise in Frequency modulation systems. Pre-emphasis and De- emphasis, Threshold effect in angle modulation.		
	2	Pulse modulation. Sampling process. Pulse Amplitude and Pulse code modulation (PCM),Differential pulse code modulation. Delta modulation, Noise considerations in PCM, Time Division multiplexing, Digital Multiplexers		
II	1	Diodes and Applicationscovering, Semiconductor Diode as a Switch, Clipper ,clamper and doubler. Diode as a Rectifier (Half Wave and Full Wave Rectifiers) with and without Filters; Breakdown Mechanisms, C,LC ,CLC Filter, IC based regulators, Zener as a regulator	16	33%
III	1	Elements of Detection Theory, Optimum detection of signals in noise,Coherent communication with waveforms- Probability of Error evaluations. BasebandPulse Transmission- Inter symbol Interference and Nyquist criterion.Pass band Digital Modulation schemes- Phase Shift Keying, Frequency Shift	14	34 %

Tota	l		40	100
	2	Digital Modulation tradeoffs. Optimum demodulation of digital signals over band-limited channels- Maximum likelihood sequence detection (Viterbi receiver). Equalization Techniques. Synchronization and Carrier Recovery for Digital modulation.		
		Keying,Quadrature Amplitude Modulation, Continuous Phase Modulation and Minimum Shift Keying.		

ANALOG AND DIGITAL COMMUNICATION LAB

Hands on experiment based on above contents.

Suggested Text / Reference Books

- 1. Haykin S., "Communications Systems", John Wiley and Sons, 2001.
- 2. Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson Education, 2002.
- 3. Taub H.and Schilling D.L., "Principles of Communication Systems", Tata McGraw Hill, 2001.
- 4. Wozencraft J. M. and Jacobs I. M., "Principles of Communication Engineering", John Wiley, 1965.
- 5. Barry J. R., Lee E. A. and Messerschmitt D. G., ``Digital Communication", Kluwer Academic Publishers, 2004.
- 6. Proakis J.G., "Digital Communications", 4th Edition, McGraw Hill, 2000.

Course code					
Category	EC				
Course title	Digital S	Signal	Proce	essing(Th	eory & Lab.)
Scheme and Credits	L	Т	Р	Credit	Semester V

Pre-requisites (if any)

3

-

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University

Faculty Subject ing

y	: Technology (Undergraduate Course) -BTech	
t	: Syllabus for Electronics and Communication	Engineeri

0	2	4	

Course Objective	 The students will be able to 1. Acquire knowledge about basic components of digital circuits 2. Understand working of different combinational and sequential circuits 3. Learn designing and analysis of different combinational and sequential circuits
Course Outcomes	 At the end of this course students will demonstrate the ability to Represent signals mathematically in continuous and discrete time and frequency domain Get the response of an LSI system to different signals Design of different types of digital filters for various applications

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Discrete time signals: Sequences; representation of signals on orthogonal basis; Sampling and reconstruction of signals;		
	2	Discrete systems attributes, Z-Transform, Analysis of LSI systems, frequencyAnalysis, Inverse Systems, Discrete Fourier Transform (DFT), Fast Fourier Transform Algorithm, Implementation of Discrete Time Systems	12	32
II	1	Designof FIR Digital filters: Windowmethod,Park- McClellan's method.		
	2	Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Approximations; Lowpass, Bandpass, Band-stop and High pass filters.	- 15	35
TH	1	Effect of finite register length in FIR filter design.Parametric and non-parametric spectral estimation.	12	33
III	2	Introduction to multiratesignalprocessing. Application of DSP.	13	
Total			40	100

Hands on experiments based on above contents.

Suggested Text / Reference Books

- 1. S.K.Mitra, Digital Signal Processing: A computer-based approach.TMH
- 2. A.V. Oppenheim and Schafer, Discrete Time Signal Processing, Prentice Hall, 1989.
- 3. John G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms And Applications, Prentice Hall, 1997.
- 4. L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1992.
- 5. J.R. Johnson, Introduction to Digital Signal Processing, Prentice Hall, 1992.
- 6. D.J.DeFatta, J. G. Lucas and W.S.Hodgkiss, Digital Signal Processing, John Wiley & Sons.

Course code								
Category	EC							
Course title	Control S	ystem	s (Th	eory)				
Scheme and Credits	L	Т	Р	Credits	Semester V			
	3	-	-	3				
Pre-requisites (if any)	-							

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

in 20

Course Objective	 The students will be able to Understand the properties of continuous and discrete time signals. Understand the properties of continuous and discrete time systems. Use mathematical models of signals for analysis. Represent a system by mathematical model. Analyse and predict the behaviour of linear systems. Use different tools in the time- and frequency- domain
Course Outcomes	 At the end of this course students will demonstrate the ability to 1. Characterize a system and find its study state behavior 2. Investigate stability of a system using different tests 3. Design various controllers 4. Solve liner, non-liner and optimal control problems

Mod ule No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
Ι	1	Introduction to control problem- Industrial Control examples. Transfer function. System with dead-time. System response. Control hardware and their models: potentiometers, synchros, LVDT, dc and ac servomotors, tacho-generators, electro hydraulic valves, hydraulic servomotors, electro pneumatic valves, pneumatic actuators. Closed- loop systems. Block diagram and signal flow graph analysis.	10	33%
		Feedback control systems- Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness. proportional, integral and derivative systems. Feed-forward and multi-loop control configurations, stability concept, relative stability, Routh stability criterion.		
п	1	Time response of second-order systems, steady-state errors and error constants.Performance specifications in time-domain. Root locus method of design. Lead and lag compensation.	16	34%
	2	Frequency-response analysis- Polar plots, Bode plot, stability in frequency domain, Nyquist plots. Nyquiststability criterion. Performance specifications in frequency-domain.		

	3	Frequency-domainmethods of design, Compensation & their realization in time & frequency domain. Lead and Lag compensation.Op-amp based and digital implementation of compensators. Tuning of process controllers. State variable formulation and solution.		
Ш	1	State variable Analysis- Concepts of state, state variable, state model, state modelsfor linear continuous time functions, diagonalization of transfer function, solution of state equations, concept of controllability & observability.	14	33%
	2	Introduction to Optimal control & Nonlinear control, Optimal Control problem,Regulator problem, Output regulator, treking problem. Nonlinear system – Basic concept & analysis.		
Total	I		40	100

Suggested Text / Reference Books

- 1. Gopal. M., "Control Systems: Principles and Design", Tata McGraw-Hill, 1997.
- 2. Kuo, B.C., "Automatic Control System", Prentice Hall, sixth edition, 1993.
- 3. Ogata, K., "Modern Control Engineering", Prentice Hall, second edition, 1991.
- 4. Nagrath& Gopal, "Modern Control Engineering", New Age International, New Delhi.

Course code								
Category	EC	C						
Course title	Electronic Measurement Lab							
Scheme and Credits	L T P Credits		Credits	Semester V				
	-	-	2	1				

<u>SHA MITTAL INSTITUTE OF TECHNOLOGY</u> SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

l	
ı Engineering	

Pre-requisites (if any)	
Course Objective	 The students will be able to To know the procedures for measuring Resistance, Inductance and Capacitance of different ranges. To perform experiments to measure three phase power, frequency, core losses. To design experiments for calibration of energy meter. 4.To know the industrial practices of Measuring earth resistance, dielectric strength of transformer oil & Testing of underground cables
Course Outcomes	 At the end of this course students will demonstrate the ability to Upon completion of study of the course should be able to calibrate and test single phase energy meter, calibrate PMMC voltmeter and calibrate LPF wattmeter Student should be able to measure resistance, inductance and capacitance Students should be able to measure 3-Φ active power and reactive power, Students should be able to test current transformers and dielectric strength of oil. Students should be able to calibrate LVDT and resistance strain gauge.

Topic and Details					
Any 8 of the Following Experiments are to be Conducted:					
1.Calibration of single phase energy Meter					
2.Measurement of low resistance using Kelvin's double Bridge.					
3.Capacitance Measurement using Schering Bridge.					
4.Inductance Measurement using Anderson bridge					
5.Measurement of 3 phase reactive power withsingle phase wattmeter					
for balanced loading					
6.Calibration of LPF wattmeter by Phantom testing					
7.Measurement of 3 phase power with single watt meter and 2 No's					
C.T.					
8.C.T. testing using Siliesbee's method –Measurement of %ratio error					
and phase angleerror of given C.T					
9.Dielectric oil testing using H.T.testing Kit					
10.LVDT and capacitance pickup-characteristics and calibration					
11.Resistance stain gauge-strain measurement and calibration					
12.Measurement of parameters of choke coil using three voltmeters and					
three ammeters method.					

<u>SHA MITTAL INSTITUTE OF TECHNOLOGY</u> SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Category	ECE	ECEL							
Course title	Embe	Embedded System (Theory& Lab.)							
Scheme and Credits	L	L T P Credit			Semester V				
	3	3 0 2 4							
Pre-requisites (if any)	-								

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Course Objective	 The students will be able to 1. To understand the basic building blocks of computer and their interconnection 2. To study various input output devices, memories and CPU structures
Course Outcomes	 At the end of this course students will demonstrate the ability to Suggest design approach using advanced controllers to real-life situations. Design interfacing of the systems with other data handling / processing systems. Appreciate engineering constraints like energy dissipation, data exchange speeds etc

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	The concept of embedded systems design, Embedded microcontroller cores, embedded memories.	10	33%
П	1	Examples of embedded systems, Technological aspects of embedded systems: interfacing between analog and digital blocks, signal conditioning, digital signal processing.		33%
	2	sub-system interfacing, interfacing with external systems, user interfacing.		
ш	1	Design trade-offs due to process compatibility, thermal considerations, etc., Software aspects of embedded systems: real time programming languages and operating systems for embedded systems.	15	34%
Total	<u>.</u>		40	100

Suggested Text / Reference Books

- 1. J.W. Valvano, "Embedded Microcomputer System: Real Time Interfacing", Brooks/Cole, 2000.
- 2. Jack Ganssle, "The Art of Designing Embedded Systems", Newness, 1999.

- 3. V.K. Madisetti, "VLSI Digital Signal Processing", IEEE Press (NY, USA), 1995.
- 4. David Simon, "An Embedded Software Primer", Addison Wesley, 2000.
- 5. K.J. Ayala, "The 8051 Microcontroller: Architecture, Programming, and Applications", Penram Intl, 1996.

Embedded System Lab: Hands on experiments based on above contents

Subject : Syllabus for Electronics and Communication Engineering

Course code							
Category	Hun	Humanities and Social Sciences Including Management courses(HSMC)					
Course title	Effe	Effective Technical Communication (Theory & Lab.)					
Scheme and Credits	L	Т	Р	Credits	Semester V		
	3	-	2	4	-		
Pre-requisites (if any)	Pre-requisites (if any)						
Course Objective		 The students will be able to attain 1. Good Knowledge of Series and Transforms 2. Confidence in using mathematics to analyse and solve problems both in academic and technical field 3. Skill in Formulating and analysing mathematical problems 					
Course Outcomes		 At the end of this course students will demonstrate the ability to explain Series and Transforms use mathematics to analyse and solve problems both in academic and technical field use skill in Formulating and analysing mathematical problems 					

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Information Design and Development- Different kinds of technical documents, Information development life cycle, Organization structures, factors affecting information and document design, Strategies for organization, Information design and writing for print and for online media.	08	20%
Π	1	Technical Writing, Grammar and Editing- Technical writing process, forms of discourse, writing drafts and revising, Collaborative writing, creating indexes, technical writing style and language. Basics of grammar, study of advanced grammar, editing strategies to achieve appropriate technical style. Introduction to advanced technical communication, Usability, Hunan factors, Managing technical communication projects, time estimation, Single sourcing, Localization.		40%

Subject : Syllabus for Electronics and Communication Engineering

	2	Self-Development and Assessment- Self assessment, Awareness, Perception and Attitudes, Values and belief, Personal goal setting, career planning, Self-esteem. Managing Time; Personal memory, Rapid reading, taking notes; Complex problem solving; Creativity		
III	1	Communication and Technical Writing- Public speaking, Group discussion, Oral; presentation, Interviews, Graphic presentation, Presentation aids, Personality Development. Writing reports, project proposals, brochures, newsletters, technical articles, manuals, official notes, business letters, memos, progress reports, minutes of meetings, event report.	16	
	2	Ethics- Business ethics, Etiquettes in social and office settings, Email etiquettes, Telephone Etiquettes, engineering ethics, Managing time, Role and responsibility of engineer, Work culture in jobs, Personal memory, Rapid reading, taking notes, Complex problem solving, Creativity.		40%
		Total	40	100

Suggested Text / Reference Books

- 1. David F. Beer and David McMurrey, Guide to writing as an Engineer, John Willey. New York, 2004
- 2. Diane Hacker, Pocket Style Manual, Bedford Publication, New York, 2003. (ISBN 0312406843)
- 3. Shiv Khera, You Can Win, Macmillan Books, New York, 2003.
- 4. Raman Sharma, Technical Communications, Oxford Publication, London, 2004.
- 5. Dale Jungk, Applied Writing for Technicians, McGraw Hill, New York, 2004. (ISBN: 07828357-4)
- 6. Sharma, R. and Mohan, K. Business Correspondence and Report Writing, TMH New Delhi 2002.
- 7. Xebec, Presentation Book, TMH New Delhi, 2000. (ISBN 0402213)

Effective Technical Communication Lab: Hands on experiments based on above contents.

Subject : Syllabus for Electronics and Communication Engineering

Course code							
Category	Mandatory Courses (MC)						
Course title	EssenceofIndianTraditional Knowledge						
Scheme and Credits	L	L T P Credits Semester V			Semester V		
	1	-	-	-			
Pre-requisites (if any)							
Course Objective	The students will be able to Understand essence of Indian traditions and culture						
Course Outcomes	At the end of this course students will demonstrate the ability to Explainessence of Indian traditions and culture						

Topic and Details

Humanities Elective: \$MOOC/swayam Based courses on the following lines has to be completed . Certificate has to be provided by individual students to get evaluated. Evaluation marking given above.

Course code						
Category	Minor Degree					
Course title	Introduction to AI & Machine Learning					
Scheme and Credits	L T P Credits Semester V					
	3 - 2 4					
Pre-requisites (if any)						
Course Objective	The students will be able to 1. Toreviewand strengthenimportantmathematicalconceptsrequiredforAI&ML. 2. Introducetheconceptof learningpatterns fromdataanddevelop astrong theoretical foundationforunderstandingstate of the art Machine Learning algorithms.					
Course Outcomes	At the end of this course students will demonstrate the ability to1. Design and implement machine learning solutions to classification, regression and clustering problems.2. Evaluateand interpret the results of the different ML techniques.3. Design and implement various machine learningalgorithmsinarange ofReal-worldapplications					

Faculty : Technology (Undergraduate Course) - BTech Subject : Syllabus for Electronics and Communication Engineering

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	DefiningArtificialIntelligence,DefiningAItechniques,UsingPredicateLogicandRepresentingKnowledgeasRules,Representingsimple factsinlogic,Computablefunctionsandpredicates,ProceduralvsDeclarativeknowledge,LogicProgramming,Mathematicalfoundations:MatrixTheoryandStatisticsforMachineLearning.	12	20%
П	2	Idea of Machines learning from data, Classification of problem –Regression and Classification, Supervised and Unsupervised learning.	08	20%
III	1	Linear Regression: Model representation for single variable, Single variable Cost Function,GradientDecent for Linear Regression, Gradient Decent inpractice	10	20%
IV	1	Logistic Regression: Classification, Hypothesis Representation, Decision Boundary, Cost function, Advanced Optimization, Multi- classification (One vs All), Problem of Overfitting.	07	20%
V	1	Discussion on clustering algorithms and use- cases cantered around clustering and classification.	5	20%
		Total	42	100

Lab Work:

1. Implementation of logical rules in Python.

2. Using any data apply the concept of:

a. Liner regression

b. Gradient decent

c. Logistic regression

3. To add the missing value in any data set.

4. Perform and plot under fitting and overfitting in a data set.

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

5. Implementation of clustering and classification algorithms

Text Books/References:

- Saroj Kaushik, Artificial Intelligence, Cengage Learning, 1st Edition2011.
 Anindita Das Bhattacharjee, "Practical Workbook Artificial Intelligence and
 - SoftComputing for beginners, Shroff Publisher-X team Publisher.
- 3. M.C. Trivedi, A Classical Approach to Artificial Intelligence, Khanna PublishingHouse, Delhi.
- 4. Jeeva Jose, Introduction to Machine Learning, Khanna Publishing House, Delhi.
- 5. Yuxi (Hayden) Liu, "Python Machine Learning by Example", Packet PublishingLimited, 2017.
- 6. Tom Mitchell, Machine Learning, McGraw Hill, 2017.
- 7. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer,2011.
- T. Hastie, R. Tibshirani, J. Friedman. The Elements of StatisticalLearning, 2e, 2011.Tsang. Foundations of constraint satisfaction. Covers constraints satisfaction problemsAvailable free online.
- 9. Paradigm of Artificial Intelligence Programming, by Peter Norvig.
- 10. Artificial Intelligence: A New Synthesis, by Nils J Nilsson.
- 11. Artificial Intelligence (3rd Edition), by Patrick Henry Winston.
- 12. Artificial Intelligence, by Saroj Kaushik, Cengage Learning

Course code						
Category	Mino	Minor Degree				
Course title	Introd	Introduction to Data Science				
Scheme and Credits	L	Т	Р	Credits	Semester V	
	3	-	2	4		
Pre-requisites (if any)		-	-	-		

Course Objective	The students will be able to1. Provide you with the knowledge and expertise to become a proficient data scientist2. Demonstrate an understanding of statistics
	andmachinelearning concepts that are vital for data science;
	 Produce Python code to statistically analyse a dataset; Critically evaluate data visualisations based on their design and use forcommunicating stories from data;
Course Outcomes	At the end of this course students will demonstrate the ability to1. Explainhow data is collected, managed and storedfor data science;2. Understand the key concepts in data science,
	 including their real-world applications and the toolkitused by data scientists; 3. Implement data collection and management scripts using Mongo DB.

<u>SHA MITTAL INSTITUTE OF TECHNOLOGY</u> SNDT Women's University Technology (Undergraduate Course) -BTech

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction to Data Science, Different Sectors using Data science, Purpose andComponents of Python in Data Science.		20%
			12	
П	2	Data Analytics Process, Knowledge Check, Exploratory Data Analysis (EDA), EDAQuantitative technique, EDA- Graphical Technique, Data Analytics Conclusion and Predictions	08	20%
Ш	1	Data Analytics Process, Knowledge Check, Exploratory Data Analysis (EDA), EDAQuantitative technique, EDA- Graphical Technique, Data Analytics Conclusion and Predictions	10	20%
IV	1	Data Visualization- Basic principles, ideas and tools for data visualization, Examples of inspiring (industry) projects- Exercise: create your own visualization of a complex dataset.	07	20%
V	1	Applications of Data Science, Data Science and Ethical Issues- Discussions on privacy, security, ethics- A look back at Data Science- Next-generation data scientists.	5	20%
		Total	42	100

Lab Work:

- Python Environment Essentials. 1. setup and Python (NumPy). 2. Mathematical computing with Computing Scientific Python (SciPy). with 3. 4. Data Manipulation with Pandas.
- 5. Prediction using Scikit-Learn
- 6. Data Visualization in python using matplotlib

Text Books/References:

- 1. Joel Grus, Data Science from Scratch, Shroff Publisher Publisher /O'Reilly Publisher Media
- 2. V.K. Jain, Big Data and Hadoop, Khanna Publishing House

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech

Subject : Syllabus for Electronics and Communication Engineering

- 3. V.K. Jain, Data Sciences & Analytics, Khanna Publishing House
- 4. Annn Ng, Kenneth Soo, Numsense! Data Science for the Layman, Shroff Publisher Publisher
- 5. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk from The Frontline. O'Reilly Publisher Media.
- 6. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets.v2.1, Cambridge University Press.
- 7. Jake VanderPlas, Python Data Science Handbook, Shroff Publisher Publisher/O'Reilly Publisher Media
- 8. Philipp Janert, Data Analysis with Open Source Tools, Shroff Publisher Publisher/O'Reilly Publisher Media.

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Semester - VI

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech

Subject : Syllabus for Electronics and Communication Engineering

Semester VI

Course code								
Category	Cor	Core Course (EC)						
Course title	Con	Computer Network (Theory and Lab)						
Scheme and Credits	L	L T P Credit Semester VI						
	3	3 0 2 4						
Pre-requisites (if any)	-							
Course Objective	The	The students will be able to 1. learnnetworkingthoroughly. 2. Design a network for a particularapplication. 3. Analyze the performance of thenetwork.						
Course Outcomes	Att	At the end of this course students will demonstrate the ability to4. Understand the concepts of networkingthoroughly.5. Design a network for a particularapplication.6. Analyze the performance of thenetwork.						

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction to computer networks and the Internet: Application layer: Principles of network applications, The Web and Hyper Text Transfer Protocol, File transfer, Electronic ail, Domain name system, Peer-to- Peer file sharing, Socket programming, Layeringconcepts.	10	33 %
II	1	Switching in networks: Classification and requirements of switches, a generic switch, Circuit Switching, Time-division switching, Space-division switching, Crossbar switch and evaluation of blocking probability, 2-stage, 3-stage and n-stage networks, Packet switching, Blocking in packet	16	34%

AN NOVEL OF THE OFFICE	SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering							
	switches, Three generations of packet switches, switch fabric, Buffering, Multicasting, Statistical							
2	Multiplexing. Transport layer: Connectionless transport - User Datagram Protocol, Connection- oriented transport – Transmission Control Protocol, Remote Procedure Call. Transport layer: Connectionless transport - User Datagram Protocol, Connection-oriented transport – Transmission Control Protocol, Remote Procedure Call. Remote Procedure Call.							
3	Congestion Control and Resource Allocation: Issues in ResourceAllocation, Queuing Disciplines, TCP congestion Control, Congestion Avoidance Mechanisms and Quality of Service.							
III 1	Network layer: Virtual circuit and Datagram networks, Router, Internet Protocol, Routing algorithms, Broadcast and Multicast routing	14	33%					
2	Link layer: ALOHA, Multiple access protocols, IEEE 802 standards, Local Area Networks, addressing, Ethernet, Hubs, Switches.							
	Total	40	100					

Text Reference books:

- 1. J.F. Kurose and K. W. Ross, "Computer Networking A top down approach featuring the Internet", Pearson Education, 5thEdition
- 2. L. Peterson and B. Davie, "Computer Networks A Systems Approach" Elsevier Morgan Kaufmann Publisher, 5th Edition.
- 3. T. Viswanathan, "Telecommunication Switching System and Networks", PrenticeHall
- 4. S. Keshav, "AnEngineering Approach to Computer Networking", PearsonEducation
- 5. B. A. Forouzan, "Data Communications and Networking", Tata McGraw Hill, 4th Edition
- 6. Andrew Tanenbaum, "Computer networks", PrenticeHall
- 7. D. Comer, "Computer Networks and Internet/TCP-IP", PrenticeHall
- 8. WilliamStallings, "Dataandcomputercommunications", PrenticeHall

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Computer Network Laboratory

Hands-on experiments related to the course.

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Technology (Undergraduate Course) -BTech

Course code								
Category	ECI	ECEL						
Course title	Micr	licrowave Theory and Techniques						
Scheme and Credits	L	Т	Р	Credit	Semester VI			
	3	3 0 0 3						
Pre-requisites (if any)	-							
Course Objective	The	 The students will be able to 1. Learn various microwave system components theirproperties. 2. Analyzemicrowave systems, the different mathematical treatment is required compared to general circuitanalysis. 3. Design microwave systems for different practicalapplication. 						
Course Outcomes	At t	At the end of this course students will demonstrate the ability to 4. Understand various microwave system components theirproperties. 5. Appreciate that during analysis/ synthesis of microwave systems, the different mathematical treatment is required compared to general circuitanalysis. 6. Design microwave systems for different practicalapplication.						

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction to Microwaves-History of Microwaves, Microwave Frequency bands;Applications of Microwaves: Civil and Military, Medical, EMI/EMC.	10	33 %
	2	Mathematical Model of Microwave Transmission- Concept of Mode, Features of TEM, TE and TM Modes, Losses associated with microwave transmission, Concept of Impedance in Microwavetransmission.		

	3	Analysis of RF and Microwave Transmission Lines- Coaxial line, Rectangular waveguide, Circular waveguide, Strip line, Micro stripline.		
п	1	Microwave Network Analysis- Equivalent voltages and currents for non-TEMlines, Network parameters for microwave circuits, Scattering Parameters.	16	34%
	2	Passive and Active Microwave Devices- Microwave passive components:Directional Coupler, Power Divider, Magic Tee, Attenuator, Resonator. Microwave active components: Diodes, Transistors, Oscillators, Mixers. Microwave Semiconductor Devices: Gunn Diodes, IMPATT diodes, Schottky Barrier diodes, PIN diodes. Microwave Tubes: Klystron, TWT, Magnetron.		
	3	Microwave Design Principles- Impedance transformation, ImpedanceMatching,Microwave Filter Design, RF and Microwave Amplifier Design, Microwave Power Amplifier Design, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design. Microwave Antennas- Antenna parameters, Antenna for ground based systems, Antennas for airborne and satellite borne systems, PlanarAntennas.		
III	1	Microwave Measurements- Power, Frequency and impedance measurement tmicrowave frequency, Network Analyzer and measurement of scattering parameters, Spectrum Analyzer and measurement of spectrum of a microwave signal, Noise at microwave frequency and measurement of noise figure. Measurement of Microwave antennaparameters.	14	33%
	2	Microwave Systems- Radar, Terrestrial and Satellite Communication, Radio Aidsto Navigation, RFID, GPS. Modern Trends in Microwaves Engineering- Effect of Microwaves on human body, Medical and Civil applications of microwaves, Electromagnetic interference and Electromagnetic Compatibility (EMI & EMC), Monolithic Microwave ICs, RFMEMS for microwave components, Microwave		

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

	Imaging.		
	Total	40	100

Text/Reference Books:

- 1. R.E. Collins, Microwave Circuits, McGrawHill
- 2. K.C. Gupta and I.J. Bahl, Microwave Circuits, Artechhouse

Course code									
Category	EC	ECEL-I							
Course title	Spee	peech and Audio Processing							
Scheme and Credits	L	Т	Р	Credit	Semester VI				
	3	0	0	3					
Pre-requisites (if any)	-								
Course Objective	The	The students will be able to 1. Understand the speech signal 2. Analyze the quality and properties of speech signal. 3. enhance the speech and audiosignals.							
Course Outcomes	At	 At the end of this course students will demonstrate the ability to 4. Mathematically model the speechsignal 5. Analyze the quality and properties of speechsignal. 6. Modify and enhance the speech and audiosignals. 							

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
Ι	1	Introduction- Speech production and modeling - Human Auditory System;General structure of speech coders; Classification of speech coding techniques – parametric, waveform and hybrid ; Requirements of speech codecs –quality, coding delays, robustness. Speech Signal Processing- Pitch-period estimation, all- pole and all-zero filters,convolution; Power spectral density, periodogram, autoregressive model, autocorrelationestimation.	10	33 %
	2	Linear Prediction of Speech- Basic concepts of linear prediction; LinearPrediction Analysis of non- stationary signals –prediction gain, examples; Levinson-Durbin algorithm; Long term and short-term linear prediction models; Moving average prediction.		
П	1	Speech Quantization- Scalar quantization-uniform quantizer, optimum quantizer,logarithmic quantizer, adaptive quantizer, differential quantizers; Vector quantization – distortion measures, codebook design, codebook types.	16	34%
	2	Scalar Quantization of LPC- Spectral distortion measures, Quantization based onreflection coefficient and log area ratio, bit allocation; Line spectral frequency – LPC to LSF conversions, quantization based on LSF. Linear Prediction Coding- LPC model of speech production; Structures of LPCencoders and decoders; Voicing detection; Limitations of the LPC model.		
III	1	Code Excited Linear Prediction-CELP speech production model; Analysis-by-synthesis; Generic CELP encoders and decoders; Excitation codebook search – state-save method, zero-input zero- state method; CELP based on adaptive codebook, Adaptive Codebook search; Low Delay CELP and algebraic CELP.	14	33%

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech

Subject : Syllabus for Electronics and Communication Engineering

2	Speech Coding Standards-An overview of ITU-T G.726, G.728 and G.729standards	

Total	40	100

Text/Reference Books:

- *1.* "Digital Speech" by A.M.Kondoz, Second Edition(WileyStudents *Edition*), 2004.
- 2. "Speech Coding Algorithms: Foundation and Evolution of Standardized Coders", W.C. Chu, WileyInter science,2003.

Course code					
Category	ECEL-I				
Course title	Scie	ntific	Com	puting	
Scheme and Credits	L	Т	Р	Credit	Semester VI
	3	0	0	3	
Pre-requisites (if any)	-				
Course Objective	 The students will be able to learn the significance of computing methods, their strengths and applicationareas. Perform the computations on various data using appropriate computationtools. 				
Course Outcomes	At the end of this course students will demonstrate the ability to 1.Understand the significance of computing methods, their strengths and applicationareas. 2.Perform the computations on various data using appropriate computationtools.				

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction: Sources of Approximations, Data Error and Computational, Truncation Error and Rounding Error, Absolute Error and Relative Error, Sensitivity and Conditioning, Backward Error Analysis, Stability andAccuracy, Computer Arithmetic: Floating Point Numbers, Normalization, Properties of Floating Point System, Rounding, Machine Precision, Subnormal and Gradual Underflow, Exceptional Values, Floating-	10	33 %

	2	Point Arithmetic, Cancellation. System of liner equations: Linear Systems, Solving Linear Systems, Gaussian elimination,Pivoting, Gauss-Jordan, Norms and Condition Numbers, Symmetric Positive Definite Systems and Indefinite System, Iterative Methods for LinearSystems		
Π	1	Linear least squares: Data Fitting, Linear LeastSquares, Normal Equations Method,Orthogonalization Methods, QR factorization, Gram-Schmidt Orthogonalization, Rank Deficiency, andColumnPivotingEigenvalues and singular values:Eigenvalues andEigenvectors, Methods for Computing AllEigenvalues, Jacobi Method, Methods forComputing Selected Eigenvalues, Singular ValuesDecomposition, Application of SVD	16	34%
	2	Nonlinear equations: Fixed Point Iteration, Newton's Method, Inverse Interpolation Method Optimization: One-Dimensional Optimization, Multidimensional Unconstrained Optimization, Nonlinear Least Squares Interpolation:Purpose for Interpolation, Choice Of Interpolating,Function, Polynomial Interpolation, Piecewise PolynomialInterpolation		
Ш	1	Numerical Integration And Differentiation: Quadrature Rule, Newton-Cotes Rule, Gaussian Quadrature Rule, Finite Difference Approximation, Initial Value Problems for ODES, Euler's Method, Taylor Series Method, Runga-Kutta Method, Extrapolation Methods, Boundary Value Problems For ODES, Finite Difference Methods, Finite Element Method, EigenvalueProblems	14	33%

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech

Subject : Syllabus for Electronics and Communication Engineering

	Total	40	100		
2	Partial Differential Equations, Time Dependent Problems, Time Independent Problems, Solution for Sparse Linear Systems, IterativeMethods Fast Fourier Transform, FFT Algorithm, Limitations, DFT, Fast polynomial Multiplication, Wavelets, Random Numbers And Simulation, Stochastic Simulation, Random Number Generators, Quasi-RandomSequences				

Text/ Reference Books:

- 1. Heath Michael T., "ScientificComputing: An Introductory Survey", McGraw-Hill, 2nd Ed.,2002
- Press William H., Saul A. Teukolsky, Vetterling William T and Brian P. Flannery, "Numerical Recipes: The Art of Scientific Computing", Cambridge University Press, 3rd Ed.,2007
- 3. Xin-she Yang (Ed.)., "Introduction To Computational Mathematics", World Scientific Publishing Co., 2nd Ed.,2008
- 4. Kiryanov D. and Kiryanova E., "Computational Science", Infinity Science Press, 1st Ed.,2006
- 5. Quarteroni, Alfio, Saleri, Fausto, Gervasio and Paola, "Scientific Computing With MATLAB And Octave", Springer, 3rd Ed.,2010

Course code						
Category	ECI	EL-I				
Course title	VLS	SI Des	sign			
Scheme and Credits	L	Т	Р	Credit	Semester VI	
	3	0	0	3		
Pre-requisites (if any)	-					
Course Objective	1. 2. 3. 4.	 technology. 2. To understand the Designing of stick diagrams and layouts for OS transistors. 3. To learn the concepts of modelling of Delay techniques and MOS layers. 4. To learn the concepts of Technology Scaling of MOS transistors. 				
Course Outcomes	At the end of this service students will demonstrate the chility to					

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Review of microelectronics and Introduction to MOS technology: Introduction MOS and related VLSI technology – NMOS-CMOS-BICMOS-Gas Technologies – thermal aspects of processing – production of E beam masks. MOS and BICMOS circuit design process: MOS layers – stick diagrams – design rules and layout – 2 μm meter – 1.2 μm meter CMOS rules – Layout diagrams – Symbolic diagrams.	12	34 %
	2	Basic Circuit Concepts: Sheet resistance – Area capacitance of layers – delay UNIT – wiring capacitances – choice of layers. Scaling of MOS circuits: Scaling models – Scaling function for device parameters – Limitation of Scaling.		

AND		SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering		Proposed in 2020		
Π	1	Subsystem design process: Architectural issues – switch logic – examples of structural design (Combinational logic)– design of ALU subsystem – commonly used storage elements – aspects of design rules.	15	33%		
:	2	Test and Testability: Design for testability built in self test (BIST) – teaching combinational logic – testing sequential logic – practical design for test guide lines – scan design techniques – etc.				
III	1	Introduction to hardware description language (HDL)Verilog/VHDL.A logic synthesis example.	13	33%		
	2	Floor-planning and Placement: I/O and power planning, clock planning. Routing: global and detailed. Example design technique: mapping of architecture to silicon.				
		Total	40	100		

Suggested Text / Reference Books TEXT BOOKS:

Basic VLSI design by Douglas A, Pucknell, Kamran Eshraghian, Prantice Hall, 1996 3rd edition.
 VERILOG HDL by Samir Palnitkar, 2nd edition, 2003

REFERENCE BOOK:

1. Mead, C.A and Conway, L.A., Introduction to VLSI Systems, Wesley – Wesley.

Course code							
Category	OE-I						
Course title	ourse title Database Management(Theory and lab)				(Theory and lab)		
Scheme and Credits	L	Т	Р	Credit	Semester VI		
	3	0	2	4			
Pre-requisites (if any)	-						
Course Objective	 The students will be able to To understand the different issues involved in the design and implementation of a database system. To study the physical and logical database designs, database modeling, relational, hierarchical, and networkmodels To understand and use data manipulation language to query, update, and manage a database To develop an understanding of essential DBMS concepts such as: database security, integrity, concurrency, distributed database, and intelligent database, Client/Server (Database Server), DataWarehousing. 						
Course Outcomes	 At the end of this course students will demonstrate the ability to 1. For a given query write relational algebra expressions for that query and optimize the developedexpressions 2. For a given specification of the requirement design the databases using E R method andnormalization. 3. For a given specification construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE, andDB2. 4. For a given query optimize its execution using Query optimizationalgorithms 5. For a given transaction-processing system, determine the transaction atomicity, consistency, isolation, anddurability. 						

AND		SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering							
I	1	 Database system architecture: Data Abstraction, DataIndependence,Data Definition Language(DDL), Data Manipulation Language(DML). Data models: Entity-relationship model, network model, relational and object oriented data models, integrity constraints, data manipulationoperations. 	16	34 %					
	2	Relational query languages: Relational algebra, Tupleand domain relational calculus, SQL3, DDL and DMLconstructs, Open source and Commercial DBMS -MYSQL, ORACLE, DB2, SQLserver.Relational database design:Domain and data dependency,Armstrong's axioms, Normal forms, Dependencypreservation, Losslessdesign.Query processing and optimization: Evaluationof relational algebra expressions, Queryequivalence, Join strategies, Query optimizationalgorithms.							
II	1	Storage strategies: Indices, B-trees, hashing. Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multi-version and optimistic Concurrency Control schemes, Databaserecovery.	14	33%					
III	1	Database Security: Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQLinjection.	10	33%					
	2	Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data warehousing and data mining.							
		Total	40	100					

Suggested books: 1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan,McGraw-Hill.

Suggested reference books

- 1 "Principles of Database and Knowledge Base Systems", Vol 1 by J. D. Ullman, Computer SciencePress.
- 2 "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe, PearsonEducation

Subject : Syllabus for Electronics and Communication Engineering

3 "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley

Faculty : Technology (Undergraduate Course) -BTech

Database Management lab

Hands on experiments based on above contents

Course code											
Category	OE	OE-I									
Course title	Adv	Advance Programing (Theory and lab)									
Scheme and Credits	L	Т	Р	Credit	Semester VI						
	3	0	2	4							
Pre-requisites (if any)	-										
Course Objective	1 пе	1. 2. 3. 4. 5. 6.	Deve mani Deve Point Deve Func Appr and I Impl Utiliz Deve	ipulating elop, debu elop, debu etions reciate use Macro ement dif ze memon elop, debu	It to It is and execute programs which use reading, writing and single dimensional and multidimensional arrays. It is and execute programs to perform memory access using It is and execute modular programs by writing and using the of various header files Define, test and implement constant if erent data types under a single structure ry effectively using Union It is and execute programs to read and write data from rage devices						
Course Outcomes	 At the end of this course students will demonstrate the ability to Develop, debug and execute programs which use reading, writing and manipulating single dimensional and multidimensional arrays. Develop, debug and execute programs to perform memory access using Pointers Develop, debug and execute modular programs by writing and using Functions Appreciate use of various header files Define, test and implement constant and Macro Implement different data types under a single structure Utilize memory effectively using Union Develop, debug and execute programs to read and write data from secondary storage devices 										

Proposed in 2020

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
Ι	1	 Arrays Declaring and initializing One-Dimensional Array and array Operations Insertion, Searching, Merging, Sorting, . Deletion Introduction of String as array of characters Declaration and Initialization of String Two-Dimensional Array and its Operations i. Insertion, Deletion ii. Matrix addition operation Multi-Dimensional Arrays sscanf() and sprintf() Functions Drawbacks of Linear Arrays 	10	33 %
	2	Pointers Introduction and Features of Pointers Declaration of Pointer Void Pointers Array of Pointers Pointers to Pointers		
II	1	<i>Functions</i> Basics of Functions Built-in and user defined Functions Using String, Math and other built-in functions	14	33%

**************************************		SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University aculty : Technology (Undergraduate Course) -BTech ibject : Syllabus for Electronics and Communication Engineering		Proposed in 2020	
		Advantages of using FunctionsWorking of a FunctionDeclaring, Defining and calling user defined Functions-The return StatementCall by Value and call by ReferenceFunction as an ArgumentRecursionAdvantages and Disadvantages of Recursion			
	2	Preprocessor Directives Introduction #define and #undef Directives #include ,#line Directive Predefined macros in ANSI C Standard I/O Predefined Streams in stdio.h Predefined macros in ctype.h			
III	1	Structure and Union Introduction and Features of Structures Declaration and Initialization of Structures Array of Structures Pointers to Structure typedef Enumerated Data Type Union	16	34%	

AND	SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University culty : Technology (Undergraduate Course) -BTech bject : Syllabus for Electronics and Communication Engineering Union of Structures		Proposed in 2020
2	Files Introduction File Operations i. Opening a File ii. Reading a File iii.Closing a File Text Modes Binary Modes File Functions i. fprintf() ii. fscanf() iii.getc()		
	iv.putc() v. fgetc() vi.fputc() vii.fseek() viii. feof() Command Line Arguments		
	Total	40	100

Reference books:

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

1.Programming in 'C' by Kamthane,A.N. Pearson publication

2.

Programming in ANSI C By Balaguruswami. E.

Advance Programing Lab

Programming experiments based on above contents.

Course code										
Category	OE-	OE-II								
Course title	Inter	Internet of Things (Theory and lab)								
Scheme and Credits	L	L T P Credit Semester VI		Credit	Semester VI					
	3	0	2	4						
Pre-requisites (if any)	-									
Course Objective	1.Des 2.Rec 3.Des	The students will be abl 1.Describe what IoT is and 2.Recognise the factors tha 3.Design and program IoT 4.Use real IoT protocols for		IoT is an factors th ogram IoT	d how it works today at contributed to the emergence of IoT					
Course Outcomes	After	At the end of this cours			e students will demonstrate the ability to the course, the students will be able rototypes					

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction to IoT: Sensing, Actuation, Networking basics, Communication Protocols, Sensor Networks, Machine-to-Machine Communications, IoT Definition, Characteristics. IoT Functional Blocks, Physical design of IoT, Logical design of IoT, Communication models & APIs.	10	33 %
	2	M2M to IoT-The Vision-Introduction, From M2M to IoT, M2M towards IoT-the global context, A use case example, Differing Characteristics. Definitions, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT		

Ant NOME	Fa	ng	Proposed in 2020	
II	1	1 M2M Architectural Overview–Building architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. Reference Architecture and Reference Model of IoT.		33%
	2	IoT Reference Architecture-Getting Familiar with IoT Architecture, Various architectural views of IoT such as Functional, Information, Operational and Deployment. Constraints affecting design in IoT world-Introduction, Technical design Constraints.		
Ш	1	Domain specific applications of IoT: Home automation, Industry applications, Surveillance applications, Other IoT application.	16	34%
	2	Developing IoTsolutions: Introduction to Python, Introduction to different IoT tools, Introduction to Arduino and Raspberry Pi Implementation of IoT with Arduino andRaspberry, Cloud Computing, Fog Computing, Connected Vehicles, Data Aggregation for the IoT in Smart Cities, Privacy and Security Issues in IoT.		
		Total	40	100

References:

 Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machineto-Machine to the Internet of Things: Introduction to a New Age of Intelligence",1stEdition, Academic Press, 2014.
 Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014
 FrancisdaCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 20134.Cuno Pfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493-9357-1

Internet of Things Lab:

Hands-on experiments based on above contents

Course code										
Category	OE	OE-II								
Course title	RTC	RTOS(Theory and lab)								
Scheme and Credits	L	L T P		Credit	Semester VI					
	3	0	2	4						
Pre-requisites (if any)	Pre-requisites (if any) -									
Course Objective	1.To 2.To 3.To	The students will be able to 1.To acquire knowledge about concepts related to OS. 2.To acquire knowledge about different types of scheduling algorithms 3.To study about Free RTOS 4.To understand the various functions of RTOS								
Course Outcomes At the end of this course students will demonstrate the ability to 1.Describe the fundamental concepts of RTOS 2.Develop programs for real time services, firmware and RTOS. 3.Develop program applications onFreeRTOS										

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Definition, Typical Real Time Applications: Digital Control, High Level Controls, Signal Processing etc., Release Times, Deadlines, and Timing Constraints, Hard Real Time Systems and Soft Real Time Systems, Reference Models for Real Time Systems: Processors and Resources, Temporal Parameters of Real Time Workload, Periodic Task Model, Precedence Constraints and Data Dependency.	10	33 %
Π	1	Common Approaches to Real Time Scheduling: Clock Driven Approach, Weighted Round Robin Approach, Priority Driven Approach, Dynamic Versus Static Systems, Optimality of Effective-Deadline-First (EDF) and Least-Slack-Time-First (LST) Algorithms, Offline Versus Online Scheduling, Scheduling Aperiodic and Sporadic jobs in Priority Driven and Clock Driven Systems.	14	33%

AND	SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering		Proposed in 2020
2	Dealing RTOS design issues, RTOS design also involves issues like data sharing/reentrancy, priority inversion, starvations, latencies, Handling of interrupts in RTOS and timing analysis. Hands on exercises using Semaphores and Mutex provides better understanding of these topics to developers		
III 1	MultiprocessorandDistributedSystemModel,16MultiprocessorPriority-CeilingProtocol,Schedulability ofFixed-PriorityEnd-to-EndPeriodicTasks, Scheduling Algorithms for End-to-End PeriodicTasks, End-to-EndTasks,Predictability and Validation of Dynamic MultiprocessorSystems,Systems, Scheduling of Tasks	5	34%
2	Model of Pagel Time Communication Priority Paged		
	Total 40)	100

Text &References:Books:

1..Rajib Mall, "Real-Time Systems: Theory and Practice," Pearson, 2008.

Jane W. Liu, "Real-Time Systems" Pearson Education, 2001
 Krishna and Shin, "Real-Time Systems," Tata McGraw Hill. 1999.

4. Real Time Systems by Jane W. S. Liu, Pearson Education Publication.

5. Real-Time Systems: Scheduling, Analysis, and Verification by Prof. Albert M. K. Cheng, John Wiley and Sons Publications.

RTOS Lab:

Hands-on experiments based on above contents

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Course code								
Category	EC	EC						
Course title	Min	Mini Project						
Scheme and Credits	L	Т	Р	Credit	Semester VI			
	0	0	4	2				
Pre-requisites (if any)	-	-						
Course Objective	The	 The students will be able to Solve a problem statement either from rigorous literature survey or from the requirements raised from needanalysis. Design, implement and test the prototype/algorithm in order to solve the conceived problem. Write comprehensive report on mini projectwork. 						
Course Outcomes	At	 At the end of this course students will demonstrate the ability to Conceive a problem statement either from rigorous literature survey or from the requirements raised from needanalysis. Design, implement and test the prototype/algorithm in order to solve the conceived problem. Write comprehensive report on mini projectwork. 						

Guidelines:

- 1. The mini-project is a team activity having 3-4 students in a team. This is electronic product design work with a focus on electronic circuitdesign.
- 2. The mini project may be complete hardware or a combination of hardware and software. The software part in mini project should be less than 50% of the total work.
- 3. Mini Project should cater to a small system required in laboratory or reallife.
- 4. It should encompass components, devices, analog or digital ICs, micro controller with which functional familiarity isintroduced.
- 5. After interactions with course coordinator and based on comprehensive literature survey/ need analysis, the student shall identify the title and define the aim and objectives of mini-project.

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

- 6. Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and submit the proposal within first week of these mester.
- 7. The student is expected to exert on design, development and testing of the proposed work as per theschedule.
- 8. Art work and Layout should be made using CAD based PCB simulation software. Due considerations should be given for power requirement of the system, mechanical aspects for enclosure and control paneldesign.
- 9. Completed mini project and documentation in the form of mini project report is to be submitted at the end ofsemester.
- 10. The tutorial sessions should be used for discussion on standard practices used forelectronic circuits/product design, converting the circuit design into a complete electronic product, PCB design using suitable simulation software, estimation of power budget analysis of the product, front panel design and mechanical aspects of the product, and guidelines for documentation /reportwriting.

Course code								
Category	PS	PS						
Course title	Web	Web Technology Lab/Tutorial						
Scheme and Credits	L	Т	Р	Credit	Semester VI			
	0	1	2	2				
Pre-requisites (if any)	-	-						
Course Objective	1.То 2.То 3.То	The students will be able to 1.To teach students the basics of server side scripting using PHP 2.To explain web application development procedures 3.To impart servlet technology for writing business logic 4.To facilitate students to connect to databases using JDBC						
Course Outcomes	1.Cr 2.Id 3.Id	At the end of this course students will demonstrate the ability to 1.Create web pages using PHP 2.Identify the difference between the HTML PHP and XML documents. 3.Identify the engineering structural design of XML and parse tree 4.Analyze the difference between and PHP and XML.						

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction to PHP: Declaring variables, data types, arrays, strings, operations, expressions, control structures, functions, Reading data from web form controls like Text Boxes, radio buttons, lists etc., Handling File Uploads, Connecting to database (My SQL as reference), executing simple queries, handling results, Handling sessions and cookies.File Handling in PHP: File operations like opening, closing, reading, writing, appending, deleting etc. on text and binary files, listing directories.	5	33 %
Ш	1	UNIT – IIClient side Scripting: Introduction to JavaScript: JavaScript language – declaring variables, scope of variables functions, event handlers (on click, on submit etc.), Document Object Model, Form validations. Simple AJAX applications.Systems.	4	33%

STATUTE CONTRACTOR		SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering								
III	1	XML: Introduction to XML, Defining XML tags, their attributes and values, Document type definition, XML Schemas, Document Object model, XHTMLParsing XML Data - DOM and SAX parsers in javaDynamic Multiprocessor Systems, Scheduling of Tasks	4	34%						
		Total	13	100						

REFERENCE BOOKS:

1. Web Programming, building internet applications, Chris Bates 2nd edition, Wiley Dremtech

2.Java Server Pages - Hans Bergsten, SPD O'Reilly

3.Java Script, D.Flanagan, O'Reilly, SPD.

4.Beginning Web Programming-Jon Duckett WROX.

5.Programming world wide web, R.W. Sebesta. Fourth Edition, Pearson. 6.Internet and World Wide Web – How to program, Dietel and Nieto, Pearson.

Web Technology Lab

Practical performance based on above contents.

Course code														
Category	Min	Minor Degree												
Course title	Intro	ntroduction to Data Analytics												
Scheme and Credits	L	Т	Р	Credits	Semester VI									
	3	-	2	4										
Pre-requisites (if any)														
Course Objective	1	. Pro bec	ovide come mons		h the knowledge and expertise to ficient data Scientist understanding of statistics learning concepts that are vital for									

	SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering										
		 Produce Python code to statistically analyse a Critically evaluate data visualisations based o design and use forcommunicating stories from data 									
Course Out	comes	 At the end of this course students will demonstrate the ability to Explain how data is collected, managed ar storedfor data science; Understand the key concepts in data science,including their real-world applicatio the toolkitused by data scientists; Implement data collection and management sc usingMongoDB 									

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction to Data Science, Different Sectors using Data science, Purpose and Components of Python in Data Science	07	20%
П	2	DataAnalyticsProcess,KnowledgeCheck,ExploratoryDataAnalysis(EDA),EDA-Quantitativetechnique,EDA-GraphicalTechnique,DataAnalyticsConclusionandPredictions </td <td>07</td> <td>20%</td>	07	20%
III	1	FeatureGenerationandFeatureSelection(ExtractingMeaningfromData)-Motivatingapplication:user(customer)retention-Generation(brainstorming,roleofdomainexpertise,andplaceforselectionalgorithms	11	20%
IV	1	Data Visualization-Basic principles, ideas and tools for data visualization, Examples of inspiring (industry) projects- Exercise: create your own visualization of a complex dataset.	10	20%
V	1	Applications of and Ethical Issues- DiscussionsData on privacy, atSciencesecurity, Science-ethics- A Next-generationData dataSciencies	07	20%
		Total	42	100

Lab Work:

1.	Python Environment	setup	and	Essentials.	
----	--------------------	-------	-----	-------------	--

- 2. Mathematical computing with Python (NumPy).
- 3. Scientific Computing with Python (SciPy).
- 4. Data Manipulation with Pandas.
- 5. Prediction using Scikit-Learn
- 6. Data Visualization in python using matplotlib

Text Books/References:

- 1. Joel Grus, Data Science from Scratch, Shroff Publisher Publisher /O'Reilly Publisher Media
- 2. V.K. Jain, Big Data and Hadoop, Khanna Publishing House

****	A DUNNOMEN'S IN THE RESULT		•	chnolog	S gy (Und	NDT W lergrad	/omen's uate Co	s Unive ourse) -	rsity BTech	OLOG	_			Proposed in 2020
3.	V.K.	Jain,	Data	Scienc	es	&	Analy	tics,	Khann	ia	Publish	ning	Hous	e
4.	Annaly	yn	Ng,	Kenne	th	Soo,	Numse	ense!	Data	Science	e	for	the	Layman
		Shroff	Publis	her	Publis	her								
5.	Cathy	O'Ne	il	and	Rache	el	Schut	t.	Doing	g Data	Scienc	æ,	Strai	ght
	Talk	from	The	Frontl	ne.	O'Rei	lly	Publis	her	Media.				
6.	Jure	Lesko	vek,	Anano	l Rajar	aman	and	Jeffre	у	Ullma	n.	Minir	ıg	of
	Massiv	/e	Datas	ets.	v2.1,	Camb	ridge	Univer	rsity	Press.			-	
7.	Jake	Vande	erPlas,	Pytho	n	Data	Scien	ce	Hand	book,	Shroff	Publi	sher	
		Publis	her/O'F	Reilly	Publis	her	Media							
8.	Philipp	Janert	Data	Analy	sis	with	Open	Sourc	e	Tools,	Shroff	Publi	sher	

Publisher/O'Reilly Publisher Media

Course code									
Category	Minor	r Deg	ree						
Course title	Introd	uctior	n t	io AI	and	ML			
Scheme and Credits	L	Т	Р	Credits	Semester	r VI			
	3	-	2	4					
Pre-requisites (if any)									
Course Objective	1. 7 2. 7	Го data Го	l S	ill be able t understand science. understand that can	basics variou	of s basic used		learning learning type of	in data.
Course Outcomes		e end To To To	e 2 1	explain how andstored	data for ous type	is data of	onstrate the abi collected, science; Machine algorithms	lity to managed learning on data	mode models

SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Linear Regression: Basic facts of linear regression, implementation of linear regression, case studies of linear regression using data set	06	20%
П	2	Logistic Regression: Basic facts and implementation of logistic regression, solve a case study to predict output using existing data set	08	20%
III	1	Clustering and Principle Component Analysis: K means and hierarchical clustering, how to make market strategies using clustering, recommendation and PCA	11	20%
IV	1	Support Vector Machine: basics of SVM and use it to detect the spam emails and recognize alphabets	09	20%
V	1	Model Selection and advanced regression: use of Lasso and Ridge.	08	20%
		Total	42	100

Lab Work:

1. Use python to predict employee attrition in a firm and help them plan their

manpower. (take data set from kaggle).

2. Create customer clusters using different market strategies on a data set.

3. Make a movie recommendation system.

4. Develop a prediction mechanism to predict which employee can go on leave in a

company in near future.

5. Recognizing alphabets using SVM.

Text Books/References:

***	AT NOMEN'S COMPERSION		SHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's Universityaculty : Technology (Undergraduate Course) -BTech ubject : Syllabus for Electronics and Communication EngineeringLearningusingPython,UDinesh Kumar andMa											oposed 1 2020
1.	Machir	ne	Learni	ing	using	Pythor	ı,	U	Dinesł	n Kumai	r and	Ν	Manar	anjan
		Pradha	ın,	John	Wiley	&	Sons.							
2.	А	Class	ical	Appro	bach	to	Artific	cial	Intelli	gence,	M.C.	Trivedi	,	Khanna
		Publis	shing	House										
3.	Machir	ne	Learni	ing,	V.K.	Jain,	Khann	a	Publis	hing	House			
4.	Advand	ced	Data	Analy	tics	Using	Pythor	n:	With	Machi	ne	Learning	3,	Deep
		Learni	ng	by	By	Sayan	Mukho	opadhya	ıy,	Apress	5.			
5.	Practic	al	Data	Mining	g"	by	Monte	F.	Hanco	ck,	Auerba	ach H	Public	ation.
6.	"Mach	ine	Learn	ing	for	Absol	ute	Begin	ners:	А	Plain	English		
	Introdu	ction	(Seco	nd	Edition	ı)"	by	Oliver	Theob	ald.				
7.	Practic	al	Data	Scienc	e	with	R,	Nina	Zumel	, John	Wiley	& S	Sons.	
8.	Python	for	Data	Scienc	e	for	Dumm	nies,	John	Paul	Muelle	er, I	Luca	
		Massa	ron,Joh	n	Wiley	&	Sons.							
9.	Big	Data	and	Analy	tics,	Seema	a Achar	ya	and	Subha	ashini	Chellap	pan,	
	WileyP	ublicat	tion.											
10.	Introdu	ction	to	Machi	ne	Learni	ng,	Jeeva	Jose,	Khann	a	Publishi	ng	House.

Semester III

Category	Course Title	Hours	s/Wee	k	Cr	D	ТР	TW	P/V	Total
Surger,		L	Т	Р		2				
EC	Electronic Devices*	3	-	-	3	2.5	75	25	-	100
EC	Electronic Devices Lab*	-	-	2	1	-	25	25	P&V	50
EC	Digital System Design*	3	-	-	3	2.5	75	25	-	100
EC	Digital System Design Lab*	-	-	2	1	-	25	25	P&V	50
EC	Signals and Systems*	3	-	-	3	2.5	75	25	-	100
EC	Computer Architecture*	3	-	-	3	2.5	75	25	-	100
BSC	Applied Mathematics*	3	1	-	4	2.5	75	25	-	100
МС	Constitution of India ^{#*\$}	-	-	-	0	-	25	25	-	50
HSMC	HSMC-02 * ^{\$} (MOOC)	-	-	-	1	-	-	50	-	50
PS	Data Structure and Algorithms Lab*	-	-	2	1	-	25	25	P&V	50
#	Total	17	1	6	20					750

[#] - This subject is non credit but Passing in this subject is Mandatory. A total of 16 hours need to be completed.

* - Common for Electronics Engineering Course

^{\$} This course can be an online MOOC/swayam/course designed by the institute or affiliated institutes. Courses on the following can be done . Certificate has to be provided by individual students to get evaluated.

HSMC-02	Women Law
	Economics for Engineer

Semester IV

Category	Course Title	Hours	s/Wee	k	Cr	D	ТР	ТW	P/V	Total	
Currigory		L	Т	Р							
EC	Electromagnetic Waves*	3	-	-	3	2.5	75	25	-	100	
EC	Electromagnetic Waves Labs*	-	-	2	1	-	25	25	P&V	50	
EC	Analog Circuits*	3	-	-	3	2.5	75	25	-	100	
EC	Analog Circuits Lab*	-	-	2	1	-	25	25	P&V	50	
EC	Microcontrollers*	3	-	-	3	2.5	75	25	-	100	
EC	Microcontrollers Lab*	-	-	2	1	-	25	25	-	50	
EC	Probability Theory and Stochastic Processes *	3	-	-	3	2.5	75	25	-	100	
EC	Network Theory*	3	-	-	3	2.5	75	25	-	100	
HSMC	HSMC-03* ^{\$}	-	-	-	2	-	25	25	-	50	
PS	Object Oriented Programing *	-	2	2	2	-	50	50	P&V	100	
	Total	15	2	8	22					800	

[#] - Passing in this subject is Mandatory

* - Common for Electronics Engineering Course

^{\$} Humanities Elective: \$MOOC/swayam Based courses on the following lines has to be completed. Certificate has to be provided by individual students to get evaluated. Evaluation marking given above.

HSMC-03

Creating and Managing IPR/Patenting

Professional Ethics

Critical Thinking

Fundamentals of Management for Engineers

Semester V

Category	Course Title	Hours	s/Wee	k	Cr	D	ТР	TW	P/V	Total
			Т	Р		2		1,1	1,,	100001
EC	Analog and Digital Communication *	3	-	-	3	2.5	75	25	-	100
EC	Analog and Digital Communication Lab *	-	-	2	1	-	25	25	P&V	50
EC	Digital Signal Processing*	3	-	-	3	2.5	75	25	-	100
EC	Digital Signal Processing Lab*	-	-	2	1	-	25	25	-	50
EC	Control Systems*	3	-	-	3	2.5	75	25	-	100
EC	Electronic Measurement Lab*	-	-	2	1	-	25	25	-	50
ECEL	Embedded System	3	-	-	3	2.5	75	25	-	100
ECEL	Embedded System Lab	-	-	2	1	-	25	25	P&V	50
HSMC	Effective Technical Communication *	3	-	-	3	1.5	50	-	-	50
HSMC	Effective Technical Communication Lab *	-	-	2	1	-	-	50	-	50

MC	Essence of Indian Traditional Knowledge ^{*#§} (MOOC)	1	-	-	0	-	25	25	-	50
АСН	Honours Subject	3	1	-	4					
	Total	19	@1	10	20 @4					750@

[#] - Passing in this subject is Mandatory

* - Common for Electronics Engineering Course

^{\$} Humanities Elective: \$MOOC/swayam Based courses on the following lines has to be completed. Certificate has to be provided by individual students to get evaluated. Evaluation marking given above.

Semester VI

Category	Course Title	Hours	s/Wee	k	Cr	D	ТР	ТW	P/V	Total
		L	Т	Р		2			1,,,	100001
EC	Computer Network	3	-	-	3	2.5	75	25	-	100
EC	Computer Network Lab	-	-	2	1	-	25	25	P&V	50
ECEL	Microwave Theory and Techniques	3	-	-	3	2.5	75	25	-	100
ECEL	ECEL-I	3	-	-	3	2.5	75	25	-	100
OE	OE-I	3	-	-	3	2.5	75	25	-	100
OE	OE-I Lab	-	-	2	1	-	25	25	-	50
OE	OE-II	3	-	-	3	2.5	75	25	-	100
OE	OE-II Lab	-	-	2	1	-	25	25	P&V	50
EC	Mini Project *	-	-	4	2	-	25	25	P&V	50
PS	Web Technology Lab/Tutorial	-	1	2	2	-	25	25	P&V	50
АСН	Honours Subject [@]	4	-	-	4					

USHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech

Proposed

Subject : Syllabus for Electronics and Communication Engineering

in 2020

Total	15	1	14	22			750@
	@ 3			<i>@</i> 4			

* - Common for Electronics Engineering Course

[@]- Honours course

Program Elective Sr.No **ECEL-I Speech and Audio Processing** 1 **Scientific Computing** 2 3 VLSI Design

Open Elective List

Sr.No	OEI	OEII
1	Database Management	Internet of Things
2	Advance Programing	RTOS

Semester VII

Category	Course Title	Hours	s/Weel	K	Cr	D	ТР	TW	P/V	Total
Category		L	Т	Р		D		1	1, 1	
ECEL	Information Theory and Coding	3	-	-	3	2.5	75	25	-	100
ECEL	Information Theory and Coding Tutorial	-	1	-	1	-	25	25	V	50
ECEL	Mobile Communications and WSN	3	-	-	3	2.5	75	25	-	100
ECEL	Mobile Communications and WSN lab	-	-	2	1	-	25	25	P&V	50
ECEL	Fiber Optic Communication	3	-	-	3	2.5	75	25	-	100
OE	OE-III	3	-	-	3	2.5	75	25	-	100
OE	OE-III Lab	-	-	2	1	-	25	25	-	50
OE	OE-IV	3	-	-	3	2.5	75	25	-	100
OE	OE-IVLab	-	-	2	1	-	25	25	-	50

ЕСР	Major Project-1	-	-	-	2	-	50	50	V	100
HSMC	Disaster Management ^s	1	-	-	1	1.5	-	50	-	50
MD	Minor Degree	3	1	-	4					
	Total	16 @3	1 @1	6	22 @4					850@

@- honours Courses

Open Elective ListSr. NoOE-IIIOE-IV1Artificial IntelligenceMachine Learning2Computer VisionBig Data Analysis3Mobile RoboticsCybersecurity and Forensic

Semester VIII

Category	Course Title	Hour	s/Wee	ek	Cr	D	ТР	TW	P/V	Total
Cutegory			Т	Р		D		1	1, ,	
ESC	Design Thinking and visualization [§]	1	-	-	1	-		50	-	50
ЕСР	Internship ^	-	-	-	4	-	50	50	V	100
ЕСР	Major Project-II	-	-	-	14	-	200	200	V	400
MD	Minor Degree subject 4 and 5	-	-	-	8	-	-	-	-	
	Total	1			19 @8					550@

a-honours Courses

[^] Under Internship the student should pursue a Internship Program (of min 4 weeks and max 6 months)with a company or in-house under the college and/or agency Supervisor. The students undergoing such a program include compulsory industrial training or in-house

training in college of 4 credits, by the end of the eighth semester. The student will have to submit the attendance record, a detailed report and presentation by the end of semester.

Under Major Project the student/students will have to complete a working simulation/prototype with a detailed report and evaluations .

\$- MOOC Course from Swayam /NPTEL or any agency on Design Thinking , Data Visualization with regular assignments and one presentation in College.

SEMESTER VI

Course code					
Category	EC				
Course title	Com	outer]	Netw	ork (Theor	y and Lab)
Scheme and Credits	L	Т	Р	Credits	Semester - VI
	3	-	2	4	

Pre-requisites (if any)	
Course Objective	 The students will be able to 1. Learn networking thoroughly. 2. Understand the designing of a network for a particular application. 3. Learn the analysis of the performance of the network.
Course Outcomes	 At the end of this course students will demonstrate the ability to 1. Understand the concepts of networking thoroughly. 2. Design a network for a particular application. 3. Analyse the performance of the network.

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction to computer networks and the Internet: Introduction to Networking devices, basic definitions, Layering architecture: The OSI model. Description of layers, TCP/IP protocol suit, Layering concepts.	12	220/
	2	Application layer: Application layer protocols, Client-server as a key model, Web and Hyper Text Transfer Protocol, File transfer, Electronic mail, Domain name system, Peer-to-Peer file sharing, Socket programming,	12	33%

п	1	Transport layer: Transport layer protocol, Connectionless transport User Datagram Protocol, Connection-oriented transport – Transmission Control Protocol, . Reliable data transfer - Stop-and- wait, Go-Back-N and Selective Repeat Protocols, TCP congestion Control, Congestion Avoidance Mechanisms and Quality of Service.	16	34 %
	2	Network layer: Virtual circuit and Datagram networks, Router, Internet Protocol, Routing algorithms-Distance Vector routing, Link State routing, Unicast, Broadcast and Multicast, Routing in the Internet RIP, OSPF, and BGP, IPv4 addressing		
III	1	Data Link layer: Link-layer and its services, Ethernet, hubs, bridges, and switches, Link-layer addressing, ALOHA, slotted ALOHA, Multiple access protocols, IEEE 802 standards, Local Area Networks, Pure and slotted ALOHA, CSMA, CSMA/CD, and CSMA/CA	12	33%
	2	Physical layer: Introduction to Physical layer and its services, Multiplexing, different types of multiplexing, introduction to transmission media, Guided media, Unguided media, Introduction to switching, Types of switching techniques, switching and TCP/IP layers.		
		Total	40	100

Text Reference books:

- 1. J.F. Kurose and K. W. Ross, "Computer Networking A top down approach featuring the Internet", Pearson Education, 5thEdition
- 2. L. Peterson and B. Davie, "Computer Networks A Systems Approach" Elsevier Morgan Kaufmann Publisher, 5th Edition.
- 3. T. Viswanathan, "Telecommunication Switching System and Networks", PrenticeHall
- 4. S. Keshav, "AnEngineering Approach to Computer Networking", PearsonEducation
- 5. B. A. Forouzan, "Data Communications and Networking", Tata McGraw Hill, 4th Edition
- 6. Andrew Tanenbaum, "Computer networks", PrenticeHall
- 7. D. Comer, "Computer Networks and Internet/TCP-IP", PrenticeHall
- 8. William Stallings,"Data And Computer Communications", PrenticeHall

SEMESTER VII

Course code	
Category	(ECEL)

Course title	Inf	Information Theory and coding (Theory and Tutorial)						
Scheme and Credits	L	Т	Р	Credit	Semester VII			
	3	3 1 - 4		4				
Pre-requisites (if any)	-	-						
Course Objective		1.To learn the concept of information and entropy 2.Study the Shannon's theorem for coding 3.Able to do the calculation of channel capacity 4.Learn to apply coding techniques						
Course Outcomes	At	At the end of the course, students will demonstrate the ability to: 1.Understand the concept of information and entropy 2.Understand Shannon's theorem for coding 3.Calculation of channel capacity 4.Apply coding techniques						

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Basics of information theory, entropy for discrete ensembles; Shannon's noiseless coding theorem; Encoding of discrete sources.	10	33 %
II	1	Markov sources; Shannon's noisy coding theorem and converse for discrete channels;Calculation of channel capacity and bounds for discrete channels; Application to continuous channels.	16	33%
Ш	1	Techniques of coding and decoding; Huffman codes and uniquely detectable codes;Cyclic codes, convolutional arithmetic codes.	14	34 %
	<u> </u>	Total	40	100

Text/Reference Books:

1.N. Abramson, Information and Coding, McGraw Hill, 1963.

2.M. Mansurpur, Introduction to Information Theory, McGraw Hill, 1987.

3.R.B. Ash, Information Theory, Prentice Hall, 1970.

4.Shu Lin and D.J. Costello Jr., Error Control Coding, Prentice Hall, 1983.

Course code	
Category	(ECEL)

Course title	Мо	Mobile Communications and WSN (Theory & Lab.)						
Scheme and Credits	L	Т	Р	Credi t	Semester VII			
	3	0	2	4				
Pre-requisites (if any)	-							
Course Objective	 The students will be able to 1. Explain the working principles of the mobile communication systems and the relation between the user features and underlying technology. 2. Explore mobile communication systems for improved performance 3. Explain research areas in the field of sensor networks 4. Understand wireless sensor networks for a given application 							
Course Outcomes	At	rse students will demonstrate the ability to tand the working principles of the mobile nication systems. tand the relation between the user features and ing technology. te mobile communication systems for improved nance tand emerging research areas in the field of sensor ts wireless sensor networks for a given application						

Module Si No. N	Topic and Details	No. of Hours assigned	Weightage in %	
--------------------	-------------------	-----------------------------	-------------------	--

Total			40	100
	2	Unique constraints and challenges in MANETs and wireless sensor networks Advantage and limitations of MANETs and Wireless Sensor Networks, Applications of Sensor Networks		
III	1	Introduction to Mobile Ad-hoc Networks(MANETs) and Wireless Sensor Networks, Classification of Mobile Ad-hoc Networks(MANETs) and wireless sensor networks, Enabling technologies for Wireless Sensor Networks,	13	33
	2	Performance measures- Outage, average snr, average symbol/bit error rate. System examples- GSM, WCDMA, LTE		
II	1	GMSK, multicarrier modulation, OFDM, MIMO and space time signal processing, spatial multiplexing, diversity/multiplexing Tradeoff.	15	35
	2	Signal propagation-Propagation mechanism- reflection, refraction, diffraction and scattering, large scale signal propagation and lognormal shadowing. Fading channels-Multipath and small scale fading- Doppler shift, statistical multipath channel models		
Ι	1	Cellular concepts- Cell structure, frequency reuse, cell splitting, channel assignment, handoff, interference, capacity, power control; Wireless Standards: Evolution of cellular standards (1G to 5G).	12	32

Text/ReferenceBooks:

1.WCY Lee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990.

2.WCY Lee, Mobile Communications Design Fundamentals, Prentice Hall, 1993.

3.Raymond Steele, Mobile Radio Communications, IEEE Press, New York, 1992.

4.AJ Viterbi, CDMA: Principles of Spread Spectrum Communications, Addison Wesley, 1995.

5.VK Garg &JE Wilkes, Wireless & Personal Communication Systems, Prentice Hall, 1996.

6.Waltenegus Dargie, Christian Poellabauer, — Fundamentals Of Wireless Sensor Networks Theory And Practice, By John Wiley & Sons Publications ,2011

7.Sabrie Soloman,—Sensors Handbook" by McGraw Hill publication. 2009

8.Feng Zhao, Leonidas Guibas,—Wireless Sensor Networks,Elsevier Publications,2004

Course code									
Category	(EC	(ECEL)							
Course title	Fibe	Fiber Optic Communication							
Scheme and Credits	L	L T p Credits Semester VII							
	3	-	-	3					
Pre-requisites (if any)	-								
Course Objective	The students will be able to 1. Acquire the knowledge about principle and use of optical systems in communication 2. Understand the physics of optical sources, detectors and switches 3. Study and analyse characteristics of optical amplifiers 4. Understand the effects of nonlinearities in optical systems.								
Course Outcomes	 At the end of this course students will demonstrate the ability to Recognize and classify the structures of Optical fiber and types. Discuss the channel impairments like losses and dispersion. Analyze various coupling losses. Classify the Optical sources and detectors and to discuss their principle. 								

Module No.	Sr. No	Topic and Details	No. of Hours assigne d	Weightage in %
I	1	Introduction to vector nature of light, propagation of light, propagation of light in a cylindrical dielectric rod, Raymodel, wave model	10	33%
	2	Different types of optical fibers, Modal analysis of a step index fiber.Signal degradation on optical fiber due to dispersion and attenuation. Fabrication of fibers and measurement techniques like OTDR.		

ANT NOME YO		<u>USHA MITTAL INSTITUTE OF TECHNOLOGY</u> SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering								
Π	1	Optical sources -LEDs and Lasers, Photo-detectors -pin- diodes,APDs, detector responsivity ,noise, optical receivers. Optical link design-BER calculation,quantum limit,power penalties.	16	34%						
	2	Optical switches -coupled mode analysis of directional couplers, electro-optics witches.								
Ш	1	Optical amplifiers-EDFA,Raman amplifier	14	33%						
	2	WDM and DWDM systems .Principles of WDM networks								
	3	Non linear effects in fiber optic links.Concept of self-phase modulation, group velocity dispersion and solition based communication.								
Total			40	100						

Suggested Text / Reference Books

- 1. J. Keiser, Fibre Optic communication, McGraw-Hill, 5th Ed.2013(IndianEdition).
- 2. 2.T.Tamir, Integrated optics, (TopicsinApplied PhysicsVol.7), Springer-Verlag, 1975.
- 3. 3.J.Gowar, Optical communication systems, Prentice Hall India, 1987.
- 4. 4.S.E.Miller and A.G.Chynoweth,eds.,Optical fibre telecommunications, AcademicPress,1979.
- 5. 5.G.Agrawal, Nonlinear fibre optics, Academic Press, 2ndEd.1994.
- 6. 6.G. Agrawal, Fiber optic Communication Systems, John Wiley and sons, NewYork, 1997
- 7. F.C.Allard, Fiber Optics Handbook for engineers and scientists, McGrawHill, NewYork (1990).

Category	OE-III							
Course title	Artif	Artificial Intelligence(Theory and lab)						
Scheme and Credits	L T P Credit Semester VII							
	3							
Pre-requisites (if any)	-	-						
Course Objective		Students will learn the basic concepts and techniques of Artificial Intelligence. They should be able to develop AI algorithms for solving practical problems.						
Course Outcomes	2.Ap 3.De 4.Ex 5.Ap	 Understand the basic concepts and techniques of Artificial Intelligence. Apply AI algorithms for solving practical problems Describe human intelligence and AI Explain how an intelligent system works. Apply basics of Fuzzy logic and neural networks. Explain Expert System and implementation 						

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction Introduction of Artificial Intelligence, Intelligent Systems, Categorization of Intelligent System, Components of AI Program, sub-areas of AI, the structure of Agents, Types of Agents, Nature of Agents, , Intelligent Agents, Learning Agents. Artificial Intelligence and its applications, Artificial Intelligence Techniques, Level of models, advantages and limitations of AI.	15	34%

	2	Problem solving techniques State space search, control strategies, heuristic search, problem characteristics, production system characteristics., Generate and test, Hill climbing, best first search, A* search, Constraint satisfaction problem, Mean-end analysis, Min-Max Search, Alpha-Beta Pruning, Additional refinements, Iterative Deepening.		
Π	1	Logic Propositional logic, predicate logic, Resolution, Resolution in proportional logic and predicate logic, Clause form, unification algorithm	15	34%
	2	Knowledge Representation schemes and reasoning Mapping between facts and representations, Approaches to knowledge representation, procedural vs declarative knowledge, Forward vs. Backward reasoning, Matching, conflict resolution, Non-monotonic reasoning, Default reasoning, statistical reasoning, fuzzy logic Weak and Strong filler structures, semantic nets, frame, conceptual dependency, scripts		
III	1	Planning The Planning problem, planning with state space search, partial order planning, planning graphs, planning with propositional logic, Analysis of planning approaches, Hierarchical planning, conditional planning, Continuous and Multi Agent planning.	10	32%
Total	1		40	100

Text Books/Suggested References:

1.A Classical Approach to Artificial Intelligence, M.C. Trivedi, Khanna Book Publishing, 2019.

2.Artificial Intelligence: A modern approach by Stuart Russel, Pearson Education, 2010.

3.Artificial Intelligence by Rich and Knight, The McGraw Hill, 2017. 4.Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 1997.

5. Artificial Intelligence by Luger, Pearson Education, 2002.

6.Artificial Intelligence by Padhy, Oxford Press, 2005. 7.https://www.edx.org/course/artificial-intelligence-ai 8.https://www.udemy.com/course/artificial-intelligence-az/

Lab:

- 1. Installation and working on various Altools viz. Python, R tool, GATE, NLTK, MATLAB, etc.
- 2. Data preprocessing and annotation and creation of datasets.
- 3. Learn existing datasets and Treebanks
- 4. Implementation of searching techniques in AI.
- 5. Implementation of Knowledge representation schemes.

USHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering in 2020

- 6. Natural language processing tool development.
- 7. Application of Machine learning algorithms.
- 8. Application of Classification and clustering problem.
- 9. Working on parallel algorithms.
- 10. Scientific distributions used in python for Data Science -Numpy, scify, pandas, scikit learn, stat models, nltk.

Course code								
Category	OE-I	OE-IV						
Course title	Mach	ine Lo	earni	ng				
Scheme and Credits	L	Т	Р	Credits	Semester - VII			
	3	-	2	4				

Pre-requisites (if any)	
Course Objective	 The students will be able to Acquire the knowledge about the basics of Machine Learning. They will also Learn and apply different machine learning models to various datasets
Course Outcomes	At the end of this course students will demonstrate the ability to Understand basic applications and issues of Machine Learning Understand the different types of datasets Analyze and work with different datasets Analyze various Machine Learning techniques and algorithms Apply various algorithms to different datasets.

Modul e No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %	
----------------	-----------	-------------------	-----------------------------	-------------------	--

I	1	Introduction What Is Machine Learning?How Do We Define Learning?, How Do We Evaluate Our Networks?, How Do We Learn Our Network?, What are datasets and how to handle them?, Feature sets, Dataset division: test, train and validation sets, cross validation.	15	34%
I	2	Basics of machine learning Applications of Machine Learning, processes involved in Machine Learning, Introduction to Machine Learning Techniques: Supervised Learning, Unsupervised Learning and Reinforcement Learning, Real life examples of Machine Learning.		
II	1	Supervised learning Classification and Regression: K-Nearest Neighbor, Linear Regression, Logistic Regression, Support Vector Machine (SVM), Evaluation Measures: SSE, MME, R2, confusion matrix, precision, recall, F-Score, ROC-Curve	15	34 %
	2	Unsupervised learning Introduction to clustering, Types of Clustering: Hierarchical, Agglomerative Clustering and Divisive clustering; Partitional Clustering - K-means clustering.		
III	1	Dimensionality reduction techniques and Deep Learning Dimensionality reduction techniques: PCA, LDA, ICA. Introduction to Deep Learning, Gaussian Mixture Models, Natural Language Processing, Computer Vision.	10	32%
		Total	40	100%

Suggested Text / Reference Books

- 1. Introduction to Machine Learning, By Jeeva Jose, Khanna Book Publishing Co., 2020.
- 2. Machine Learning for Dummies, By John Paul Mueller and Luca Massaron, For Dummies, 2016.
- **3.** Machine Learning, By Rajeev Chopra, Khanna Book Publishing Co., 2021.
- 4. Machine Learning: The New AI, By Ethem Alpaydin, The MIT Press, 2016.
- 5. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
- 6. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of StatisticalLearning, Springer 2009.
- 7. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007.
- 8. Machine Learning, Tom M. Mitchell, McGraw Hill Education, 2017.
- 9. https://www.udacity.com/course/intro-to-machine-learning--ud120
- 10. https://www.coursera.org/learn/machine-learning-duke

Laboratory/ Practicals:

1.Python Introduction

2.Loops and Conditions and other preliminary stuff

3.Functions, Classes and Modules

4.Exceptions, Database access

5.Mathematical computing with Python packages like: numpy, Mat- plotLib, pandas Tensor Flow, Keras

6.Implement basic ML models like SVM, KNN, K-Means, Logistic Regression, Linear Regression

Course code							
Category	OE-IV						
Course title	Big D	ata A	nalys	sis(Theory	and lab)		
Scheme and Credits	L	Т	Р	Credits	Semester - VII		
	3	-	2	4			

Pre-requisites (if any)	
Course Objective	• The students should be able to understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects. The student should identify and successfully apply appropriate techniques and tools to solve big data problems.
Course Outcomes	After completion of course, students would be able to: 1.Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects. 2.Apply appropriate techniques and tools to solve big data problems 3.Describe big data and use cases from selected business domains 4.Explain NoSQL big data management 5.Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics

Module

No.

Sr.

No

Topic and Details

<u>USHA MITTAL INSTITUTE OF TECHNOLOGY</u> SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

Weightage

33%

34 %

33%

100

13

40

Total

in %

No.

Hours

assigned

of

			8	l
I	1	Introduction to big data :Introduction to Big Data Platform, Traits of Big data, Challenges of Conventional Systems, Web Data, Evolution of Analytic Scalability, Analysis vs Reporting, Statistical Concepts: Sampling Distributions, Re- Sampling, Statistical Inference, Prediction Error.	12	
	2	Basic data analysis and data analytic methods using R :Regression Modelling, Multivariate Analysis, Bayesian Modelling, Inference and Bayesian Networks, Support Vector and Kernel Methods, Analysis of Time Series: Linear Systems Analysis, Nonlinear Dynamics, Rule Induction, Neural Networks: Learning and Generalization, Competitive Learning, Principal Component Analysis and Neural Networks, Fuzzy Logic	12	
П	1	Frequent item sets and clustering: Market Based Model, Apriori Algorithm, Handling Large Data Sets in Main Memory, Limited Pass Algorithm, Counting Frequent item sets in a Stream, Clustering Techniques: Hierarchical, K-Means, Frequent Pattern based Clustering Methods.		
	2	Mining data streams: Introduction to Streams Concepts: Stream Data Model and Architecture, Stream Computing, Sampling Data in a Stream: Filtering Streams, Counting Distinct Elements in a Stream, Estimating Moments, Counting Oneness in a Window, Decaying Window, Real time Analytics Platform (RTAP) Applications, Case Studies, Real Time Sentiment Analysis, Stock Market Predictions.	15	
III	1	Framework, technologies, tools and visualization: Map Reduce: Hadoop, Hive, MapR, Sharding, NoSQL Databases:		

Text Books/Suggested References:

1.Bart Baesens, "Analytics in a Big Data World: The Essential Guide to data Science and its Applications", Wiley publications, 2014.

S3, Hadoop Distributed File Systems, Visualizations: Visual Data Analysis Techniques, Interaction Techniques; Systems and Analytics Applications, Analytics using Statistical packages,

Industry challenges and application of Analytics

2.V.K. Jain, Big Data & Hadoop, Khanna Book Publishing Co., Delhi. (ISBN 978-93-82609-131)

3. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2003.

4. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2020.

5. Jeeva Jose, Beginner's Guide for Data Analysis using R Programming, Khanna Book Publishing House, 2019.

6.Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley, 2012. 7.Glenn J. Myatt, "Making Sense of Data", Wiley, 2006.

Laboratory/ Practicals:

1.Describe big data and use cases from selected business domains.

2.Explain NoSQL big data management.

3.Install, configure, and run Hadoop and HDFS.

4.Perform map-reduce analytics using Hadoop.

Course code						
Category	Project Stage(ECP)					
Course title	Major Project - I (ECP-I)					
Scheme and Credits	I T P Credit Semester VII - - - 2					
Pre-requisites (if any)	-					
Course Objective	 The objective of Major Project-I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. to provide a good initiation for the student(s) in R&D work 					
Course Outcomes	 At the end of this course students will demonstrate the ability to Analyze, model building, simulate, experiment, design and implement the practical solution for given problem statement(s) based on investigative study in the broad field of Electronics & Communication Engineering. Perform R&D for assigned work 					
Guidelines	 The assignment to normally include: Survey and study of published literature on the assigned topic Working out a preliminary Approach to the Problem relating to the assigned topic Conducting preliminary Analysis / Modeling / Simulation / Experiment /Design / Feasibility Preparing a Written Report on the Study conducted for presentation to the Department Final Seminar, as oral Presentation before a departmental committee. 					

Course code								
Category	HSM	HSMC						
Course title	Disas	ter M	anag	ement(The	ory)			
Scheme and Credits	L	Т	Р	Credits	Semester - VII			
	1	-	-	1				

Pre-requisites (if any)	
Course Objective	 Students will be able to: 1. learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response. 2. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. 3. develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations. 4. critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in
Course Outcomes	 At the end of this course students will demonstrate the ability to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response. evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. understand the standards of humanitarian response and practical relevance in specific types of disasters and conflict situations. understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Introduction Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.		
	2	Repercussions Of Disasters And Hazards: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts	12	33%
II	1	Disaster Prone Areas In India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics		
	2	Disaster Preparedness And ManagementPreparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.	15	34 %
Global And Nation Assessment, Glob		Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for	13	33%
	2	Disaster Mitigation: Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.		
		Total	40	100

Reference Books:

1.R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company. Model Curriculum of Engineering & Technology PG Courses [Volume-I][42]

2.Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3.Goel S. L., Disaster Administration And Management Text And Case Studies",Deep &Deep Publication Pvt. Ltd., New Delhi

SEMESTER VIII

Course code

Category	ESC					
Course title	Design Thinking and Visualization					
Scheme and Credits	L	Т	Р	Credits	Semester VIII	
	1	-	-	1		
Pre-requisites (if any)	-	<u> </u>	<u> </u>	<u> </u>		
Course Objective		 The students will be able to Acquire the knowledge about the new ways of creative thinking Learn the innovation cycle of Design Thinking process for developing innovative products which are useful for a student in preparing for an engineering career. 				
Course Outcomes	 Develop new w of Design Thinl Propose real-tin Perceive individ 		elop new w esign Thin pose real-ti ceive indivi	rse students will demonstrate the ability to vays of creative thinking and Learn the innovation cycle king process for developing innovative products ime innovative engineering product designs idual differences and its impact on everyday decisions and a better customer experience		

Module No.	Sr. No	Topic and Details	No. of Hours assigned	Weightage in %
I	1	Basics of Design Thinking Definition of Design Thinking, Need for Design Thinking, Objective of Design Thinking, Concepts & Brainstorming, Stages of Design Thinking Process (explain with examples) – Empathize, Define, Ideate, Prototype, Test	12	33%
	2	Being Ingenious & Fixing Problem Understanding Creative thinking process, Understanding Problem Solving, Testing Creative Problem Solving		
П	1	Process of Product Design Process of Engineering Product Design, Design Thinking Approach, Stages of Product Design, Examples of best product designs and functions, Assignment – Engineering Product Design	15	34%

Estb:TOTE	USHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering			Proposed in 2020	
	2.	Design Thinking & Customer Centricity Practical Examples of Customer Challenges, Use of Design Thinking to Enhance Customer Experience, Parameters of Product experience, Alignment of Customer Expectations with Product Design			
III	1	Visualization Importance of visualization in design thinking, various visualization tools, how to use these Visualization tool for design thinking	13	33%	
	2	Feedback, Re-Design & Re-Create Feedback loop, Focus on User Experience, Address "ergonomic challenges, User focused design, rapid prototyping & testing, final product, Final Presentation / Case study – "Solving Practical Engineering Problem through Innovative Product Design & Creative Solution"			
Total	I		40	100	

Suggested Text / Reference Books

- 1. Idris Mootee, "Design Thinking for Strategic Innovation: What They Can't Teach You at Business or Design School", Wiley Publications, 2013.
- 2. Gavin Ambrose, Paul Harris, "Basics Design: Design Thinking", AVA Publishing, 2010.

Course code					
Category	(ECP)				
Course title	Major Project - II (ECP-II)				
Scheme and Credits	I T P Credit Semester VIII				
	14				
Pre-requisites (if any)					
Course Objective	 The object of Major Project II & Dissertation is to enable the student to Extend further the investigative study taken up under EEP-I, involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. Get a good training in R&D work and technical leadership 				
Course Outcomes	 At the end of this course students will demonstrate the ability to Detailed Analysis / Modelling / Simulation/ Design/ Implementation for the practical solution of given problem statement(s) based on investigative study in the broad field of Electronics & Communication Engineering. Perform R&D for assigned work Build final product / process, perform testing and analyze results Prepare a paper for Conference presentation / Publication in Journals 				
Guidelines	 The assignment to normally include: In depth study of the topic assigned in the light of the Report prepared under EEP-I. Reporting the Supervisor/ Mentor once or twice in the week. Review and finalization of the Approach to the Problem relating to the assigned topic. Preparing an Action Plan for conducting the investigation, including teamwork. Detailed Analysis / Modelling / Simulation / Design /Problem Solving /Experiment as needed. Final development of product /process, testing, results, conclusions and future directions. Preparing a paper for Conference presentation / Publication in Journals , if possible. 				

<u>USHA MITTAL INSTITUTE OF TECHNOLOGY</u> SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

 Preparing a Dissertation in the standard format for being evaluated by the Department. Final Seminar Presentation before a Departmental Committee.

Course code					
Category	(ECP)				
Course title	Internship				
Scheme and Credits	ITPCredi tSemester VIII4				
Pre-requisites (if any)	-				
Course Objective	 The students will be able to get exposure to working in the industry. Improve their skills needed for professional life hands-on experience while working on industrial project during the internship 				
Course OutcomesAt the end of this course students will demonstrate the ability to Confidently work on different projects with responsibilitiesProfessional work ethic, skills, creativity, and ability to work other people and generally fit in with the industry					
Guidelines	 Under Internship, the Student should pursue an internship program of minimum 4 weeks with a company ,expected contact hours in industry 160 to 180hrs. The students undergoing such a program include compulsory industrial training of 4 credits, by the end of the eighth semester. Internships can be in offline or online mode. Every student is required to prepare a file containing documentary proofs of the activities done by him in an industry. Weekly progress reports should be mailed to faculty mentor and industry supervisor. 				

USHA MITTAL INSTITUTE OF TECHNOLOGY SNDT Women's University

Faculty : Technology (Undergraduate Course) -BTech Subject : Syllabus for Electronics and Communication Engineering

6.	The student will have to submit the internship joining letter, daily attendance record, a detailed report and presentation and completion
	certificate from industry by the end of semester
7.	Students should maintain a handwritten internship diary(include daily
	attendance and daily progress report) signed by an industry supervisor.
8.	Students undergo industrial training at the concerned Industry /
	Organisation. In-between Faculty Member(s) evaluate(s) the
	performance of students once/twice and Evaluation Report of the
	students is submitted in the department with the consent of Industry
	persons/Trainers.
9.	Internship can be extended for PROJECT II with permission from the
	institute.
10.	Internship evaluation and Project II evaluation are separate.