SNDT Women's University

(Sndt.digitaluniversity.ac)

Syllabus B. Tech. in Electronics Engineering

SNDT Women's University

1, Nathibai Thackersey Road, Mumbai 400 020 Applicable to students taking admission in and after 2015 Revised – 2018

SNDT Women's University 1, Nathibai Thackersey Road, Mumbai 400020

Faculty Name: Technology Course Name: B. Tech (ENC/EE/IT/CST)

Code	Subjects	L	Cr	P / T	D	ТР	TW	P/V	Т
	Engineering Mathematics-I	4	4		2.5	75	25		100
	Applied Science-I	4	4		2.5	75	25		100
	Engineering Drawing	4	4		2.5	75	25		100
	Electrical Circuits	4	4		2.5	75	25		100
	Programming in C	4	4		2.5	75	25		100
	Applied Science Lab-I		2	2	2		25	25	50
	Electrical Circuits lab		2	2	2		25	25	50
	C Programming Lab		2	2	2		25	25	50
	Workshop-I		2	2	2		25	25	50
	Engineering Drawing Tutorial		2	2	2		25	25	50
	Total	20	30	10	22.5	375	250	125	750

SCHEME: Semester I

SCHEME: Semester II

Subjects	L	Cr	P /	D	ТР	Т	P/V	Т
			Т			W		
Engineering Mathematics –II	4	4		2.5	75	25		100
Applied Science-II	4	4		2.5	75	25		100
Electronics Devices	4	4		2.5	75	25		100
Mechanics and Thermodynamics	4	4		2.5	75	25		100
Communications Skills- I	4	4		2.5	75	25		100
Applied science lab-II		2	2	2		25	25	50
Electronic Devices Lab		2	2	2		25	25	50
Introduction to Computational Techniques		2	2	2		25	25	50
Workshop-II		2	2	2		25	25	50
Mechanics and Thermodynamics Lab		2	2	2		25	25	50
Total	20	30	10	22.5	375	250	125	750

SCHEME: Semester III

Code	Subjects	L	Cr	P /	D	TP	TW	P/V	Т
				Т					
	Engineering Mathematics-III	4	4		2.5	75	25		100
	Discrete Electronic and Circuits	4	4		2.5	75	25		100
	Digital Logic Circuits	4	4		2.5	75	25		100
	Electrical Network Theory	4	4		2.5	75	25		100
	Electronic Measurements and Instrumentation	4	4		2.5	75	25		100
	Environmental Science	4	4		2.5	75	25		100
	Discrete Electronics Lab		2	2	2		25	25	50
	Logic Circuits Lab		2	2	2		25	25	50
	Measurements and Instrumentation Lab		2	2	2		25	25	50
	Electrical Network Theory Tutorial		2	2	2		25	25	50
	Total	24	32	8	23	450	250	100	800

SCHEME: Semester IV

Code	Subjects	L	Cr	P /	D	ТР	TW	P/V	Т
	Statistical Theory of Communication	4	4	1	2.5	75	25		100
	Numerical methods and Linear Algebra	4	4		2.5	75	25		100
	Signals and System	4	4	*	2.5	75	25		100
	Analog Circuits	4	4		2.5	75	25		100
	Electromagnetic Field Theory	4	4		2.5	75	25		100
	Computer Architecture and Organization	4	4		2.5	75	25		100
	Numerical methods lab		2	2	2		25	25	50
	Signals and System Tutorial		2	2	2		25	25	50
	Analog Circuits lab		2	2	2		25	25	50
	Electromagnetic Field Theory Tutorial		2	2	2		25	25	50
	Total	24	32	8	23	450	250	100	800

SCHEME: Semester V

Code	Subjects	L	Cr	P /	D	ТР	Т	P /	Т
				Т			W	V	
	Microprocessor-I	4	4		2.5	75	25		100
	Filter Theory	4	4		2.5	75	25		100
	Antenna Theory	4	4		2.5	75	25		100
	Control System	4	4		2.5	75	25		100
	Communication Skills-II	4	4		2.5	75	25		100
	Principles of Communication	4	4		2.5	75	25		100
	Microprocessor-I Lab		2	2	2		25	25	50
	Principles of Communication Lab		2	2	2		25	25	50
	Filters Theory lab		2	2	2		25	25	50
	Control System Lab		2	2	2		25	25	50
	Total	24	32	8	23	450	250	100	800

SCHEME: Semester VI

Code	Subjects	L	Cr	P / T	D	ТР	T W	P/V	Т
	Microprocessor-II	4	4	-	2.5	75	25		100
	Automotive Electronics	4	4		2.5	75	25		100
	Digital Signal Processing and Applications	4	4		2.5	75	25		100
	Industrial Electronics	4	4		2.5	75	25		100
	Digital Communication	4	4		2.5	75	25		100
	Microprocessor-II lab		2	2	2		25	25	50
	Automotive Electronics lab		2	2	2		25	25	50
	DSP lab		2	2	2		25	25	50
	Power Electronics Lab		2	2	2		25	25	50
	Digital Communication Lab		2	2	2		25	25	50
	Seminar		2	2	2		25	25	50
Total		20	32	12	24.5	375	275	150	800

SNDT Women's University 1, Nathibai Thackersey Road, Mumbai 400020

Faculty Name: Technology Course Name: B. Tech (ENC/EE/IT/CST)

SCHEME: Semester VII

Code	Subjects	L	Cr	P /	D	TP	TW	P/V	Т
				Т					
	Consumer Electronics	4	4		2.5	75	25		100
	Mechatronics	4	4		2.5	75	25		100
	Embedded and IOT System	4	4		2.5	75	25		100
	VLSI Design	4	4		2.5	75	25		100
	Elective –I	4	4		2.5	75	25		100
	VLSI Design Lab		2	2	2		25	25	50
	Mechatronics Lab		2	2	2		25	25	50
	Elective Lab I		2	2	2		25	25	50
	Embedded and IOT System Lab		2	2	2		25	25	50
	Consumer Electronics Lab		2	2			25	25	50
	Project –I (Stage I)		2	2			25	25	50
	Total	20	32	12	20.5	375	275	150	800

SCHEME: Semester VIII

Code	Subjects	L	Cr	P /	D	ТР	TW	P/V	Т
				Т					
	Computer and Communication	4	4		2.5	75	25		100
	<u>Network</u>								
	Elective II	4	4		2.5	75	25		100
	Communication Networks Lab		2	2	2		25	25	50
	Elective Lab II		2	2	2		25	25	50
	Project –II (Stage II)		10	8			150	100	250
	Project –III (Stage III)		10	8			150	100	250
	Total	08	32	20	9	150	400	250	800

Elective List of Electronics

Sr. No	Elective-I	Elective-II
1	Renewable Energy Sources	Management for Information and Communication Professional
2	Coding Techniques and Cryptography	HD languages
3	RF Circuit Design	Wireless and Mobile Communication
4	Advanced Electronics and Instrumentation	Robotics

ENGINEERING MATHEMATICS – I Sem: I Lectures: 4 Hr

Branch : ENC/EE/IT/CST Sem: I

Credit: 4

Objective : On completion of the course, the student will have:

• Confidence in using mathematics to analyze and solve problems both in academic and technical field

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
		Partial Differentiation - Definition, differentiation of composite implicit functions, chain ruleEuler's theorem on Homogeneous functions		
I	1	Total differentiation of composite functions using partial differentiation.	15	25
		Errors and approximation, Extreme values of functions of two variables, applications in engineering.		
	2	Expansion of functions (real variables) Taylor's and Maclaurin's series		
	1	Matrices 1– Types of Matrices. Adjoint of a matrix, Inverse of a matrix by using AdjointElementary transformations. Rank of a matrix. Reduction to a normal form.Partitioning of matrices, Orthogonal Matrices		
п	2	Matrices 2-System of homogeneous and non – homogeneous equations, their consistency and solutionsLinear dependence and independence of rows and columns of a matrix area in a real fieldEigen values and Eigen vectors. Cayley Hamilton theorem, Minimal Polynomial – Derogatory and non-derogatory	24	40
	1	matrices.Complex Numbers -Definition of complex numbersCartesian, Polar and exponential form. Algebra of ComplexnumbersDe-Moiver's theorem and roots of complex numbers.	15	
111	2	Hyperbolic functions – Hyperbolic Functions, Separation real and imaginary parts of circular & Hyperbolic functions.	15	25
	3	Logarithm of complex numbers.Applications in Engg.		
IV	1	Differential Calculus - Successive differentiation, Leibnitz's theorem (without proof) and applications in engineering field. Indeterminate forms. L'Hospital's rule	6	10
		TOTAL	60	100

Text / Reference Books:

- 1. P. N. Wartikar & J. N. Wartikar, "A Text Book of Applied Mathematics", 7th edition, Pune Vidyarthi Griha Prakashan, Reprint-J-2008.
- 2. B. S. Grewal, "Higher Engineering Mathematics", 41th edition, 1953, Khanna Publishers, Reprint-2011.
- 3. Shanti Narayan, "Matrices", S. Chand, 9th edition, 2011
- 4. Shanti Narayan, "Differential Calculus", S. Chand, 1st edition, 2010
- 5. A. R. Vashishtha, "Matrices", 42th edition, Krishna Prakashan Mesdia (P) Ltd., 2011.
- Edwin Kreyszig, "Advance Engg. Mathematics", 9th edition, New Age International (P) Ltd; 2011.

APPLIED SCIENCE – I									
em: I	Lectures: 4 Hr	Credit: 4							
(APPLIED em: I	APPLIED SCIENCE – I em: I Lectures: 4 Hr							

Objective : The students will acquire knowledge of

- Different types diffraction and interference and perform experiments on the same.
- Prisms and gratings, sonic displays and sonogram, sound and acoustics.
- Lasers, optical fibers, hologram and concept of photocell, electron diffraction and modern physics which is the basis of electronics.
- Principles underlying various methods of water analysis and treatment.
- Photophysical and chemical process taking place in our surroundings and applications of spectroscopy in engineering.
- Materials used in different fields of engineering and their composition, construction and applications such as batteries, electrodes, etc.

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
Ι	2	 Interference and diffraction of Light: Interference due to division of wavefront and division of amplitude, Young's double slit expt., Superposition, Theory of Biprism, Interference from parallel thin films, wedge shaped films, Newton rings, Michelson interferometer. Fresnel Diffraction, Diffraction at a straight edge, Fraunhoffer diffraction, Diffraction grating, dispersive power of Grating, resolving power of prism and grating. Polarization and ultrasonics: Introduction, production of plane polarized light by different methods, Brewster and Malus Laws. Double refraction, Quarter & half wave plate, Nicol prism, specific rotation, Laurent's half shade polarimeter. Ramdson & Huygen Eye pieces, Electron microscope Ultrasonics: Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating –Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram 	15	25
Π	1	Fiber Optics and Holography: Introduction, temporal and spatial coherence, principle of Laser, stimulated and spontaneous emission, Einstein's Coefficients, He-Ne Laser, Ruby Laser, Application of Lasers. Fundamental ideas about optical fiber, Types of fibers, Acceptance angle and cone, Numerical aperture, Propagation mechanism and communication in optical fiber. Attenuation, Signal loss in optical fiber and dispersion. Basic Principle of Holography, Construction and reconstruction of Image on hologram and applications of holography.	15	25
	2	wavelength; experimental verification of de Broglie theory; properties		

		of matter waves; Wave function, Physical interpretation of wave function; Heisenberg's uncertainty principle; Electron diffraction experiment and Gama ray microscope experiment; Applications of uncertainty principle; Schrodinger's time dependent wave equation, time independent wave equation, - Motion of free particle, Physical significance of wave function – Particle in a one dimensional box,		
		Compton's effect.		
III	1	Water and its treatment: Impurities in water, Hardness of water, types of hardness. Determination of Hardness of water by EDTA method and problems. Softening of water by Hot and cold lime soda method and problems. Zeolite process and problems. Ion Exchange process • Drinking water or Municipal water, Treatments removal of microorganisms, by adding Bleaching powder, Disinfection by Ozone, Electro-dialysis and Reverse osmosis, ultra filtration. BOD, COD (def. & significance), sewage treatments activated sludge process, numerical problems related to COD	15	25
	2	Photochemistry and analytical methods: Laws of Photochemistry, Photo physical processes, Chemiluminescence and Photo-sensitization, Fluorescence and Phosphorescence, Photochemical reactions: Photolysis of HI, Photochemical reaction between H ₂ and Br ₂ , Photosensitized reactions and photocleavage of water, Quantum efficiency. Elementary ideas and simple applications of U.V., visible, infra-red, microwave and HNMR spectral techniques.		
IV	1	Lubricants: Introduction, Definition, Mechanism of Lubrication, Classification of lubricants, Solid lubricants (graphite & Molybdenum disulphide), Semisolid lubricants (greases Na base, Li base, Ca base), Liquid lubricants (blended oils). Properties of lubricants, definition and significance of viscosity, viscosity index, flash and fire points, cloud and pour points, oiliness, Emulsification, Acid value and problems, Saponification value and problems.	15	25
ĨV	2	Chemistry in the Service of Society (Illustrative Examples and application Only) Building and Construction Materials(1), Health and Medicine(2), Materials for Electronics(1), Material for Transport Technology(1), Materials for Energy Devices(2), Environment-Pollution Monitoring and Control(2) and Catalysis and catalyst Development(1).		
		TOTAL	60	100

Text /Reference Books

- 1. Avadhanulu & Kshirsagar, "A Textbook of Engineering physics", 8th edition, S. Chand Publication, 1992.
- 2. Vasudeva, "Modern Engineering Physics", 1st edition, S. Chand Publication, 1999.
- 3. J. C. Upadhya, "A textbook of Mechanics", Himalaya Publishing House, 2008.
- 4. Jain & Jain, "Engineering Chemistry", 1st edition, Dhanpat Rai Publications, 2009.
- 5. Dara & Dara, "Engineering Chemistry", 5th edition, S. Chand, 1996.
- 6. Shashi Chawla, "A Text Book of Engineering Chemistry", Dhanpat Rai Publications.

ENGINEERING DRAWING /IT/CST Sem: I Lectures: 4 Hr Credit: 4

Branch : ENC/EE/IT/CST Sem: Objective : After studying this course:-

- Students should be able to visualize the objects.
- They should be able to understand and read drawing.
- They should be able to present the same.

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
	1			
1	2	 Engineering curves: Conic Section To draw an ellipse by Arcs of circle method & Concentric circles method. To draw a parabola by Directrix and focus method & Rectangle method To draw a hyperbola by Transverse Axis and focus method & rectangular hyperbola. Engineering curves To draw involutes of circle & pentagon, To draw a cycloid, epicycloids, hypocycloid. 	15	25
II	1	15	25	
	3	Projection of lines (Lines inclined to one plane only)		
Ш	1	 Projection of Planes: Triangular, Square, Rectangular, Pentagonal, Hexagonal and Circular planes inclined to either HP or VP only. Projection of Solids: (Prism, Pyramid, Cylinder, Cone only) Solid projection with the axis inclined to HP and VP. 	15	25
IV	1	Isometric projections:	15	25

Isometric scale, comparison of true scale with isometric scale. Conversion of orthographic views into isometric View /		
projection.		
TOTAL	60	100

Text /Reference Books

- 1. N. D. Bhatt, "Engineering Drawing (Plane and solid geometry)", Charotar Publishing House Pvt. Ltd., 51th edition, 2012.
- 2. N. D. Bhatt & V.M. Panchal, "Machine Drawing", Charotar Publishing House Pvt. Ltd., 43rd edition, 2008.
- 3. M. B Shah & B.C Rana, "Engineering Drawing", Pearson Publications, 22nd edition, 2012.
- 4. P. J. Shah, "Engineering Graphics", S Chand Publications, 32nd edition, 1995.
- 5. Dhananjay A Jolhe, "Engineering Drawing" Tata McGraw Hill, 2011.

ELECTRICAL CIRCUITS					
Branch : ENC/EE/IT/CSTSem: ILectures: 4 HrCredit: 4					
Objective : The students will be able to					

• Acquire knowledge about basic components of electrical circuits

- Understand working of different electrical circuits
- Analyze AC circuits
- Analyze DC circuits

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1	Classification of devices of electrical circuits: Basic components of the circuit model a) Resistance b) Inductance c) Capacitance, Parameters and its representations (sign conventions and graphical representations.		
I	2	Electrical Sources : Different types of Energy Sources ,Ideal sources a) current b) voltage, Dependent and independent sources, transformation of energy sources	15	25
1	3	Classification of Elements : Criteria for classification, a) Lumped /Distributed b) Linear/Nonlinear elements c) Passive/Active elements d) Bilateral/non-bilateral elements e) Time variant/Time invariant elements	15	23
	4 no	Basic circuit Analysis : Nodal analysis with voltage source, nodal analysis with current source, Mesh analysis using Matrix and Loop method a) Super mesh b) super node		
П	1	Network Theorems : Superposition, Thevenin's theorem, Norton's theorem, Substitution, Reciprocity, Maximum power transfer theorem, Tellegen's theorem, star-delta transformation	15	25
III	1	Introduction to A.C. Circuits/Steady state analysis: Introduction & alternating currents and voltages a) sine wave, angular relation, phase of a sine wave, sine wave equation b) concepts of lead/lag c)voltage and current values of a sine wave, Instantaneous value, peak value, R.M.S. value, average value .form factor Phase relation:- a) in a pure resistor b) pure inductor c) pure capacitor d) AC thru. RL in series e) AC thru. RC in series f) series RLC Series resonance, Parallel branched A.C. circuit: - a) RLC b) parallel resonance. Power in A.C. circuits: a) pure resistor, capacitor and inductor circuits b) Concepts of power factors, application of power factor, phase diagrams.	15	25
IV	1	Transient Analysis: Introduction, Differential equation, order of the circuit, network equation, initial and final conditions of basic elements, Problems based on the above concepts concentrating on RL,RC,LC,RLC circuits	15	25
	2	Transformers : Types of transformers, testing of transformers, Ideal transformers TOTAL	60	100

Text / Reference Books:

- 1. Murthy & Kamath, "Basic Circuit Analysis", 2nd Edition, Jaico Publishing Home, 2002
- 2. B. L. Theraja, "Electrical Engg. & Technology", 2nd Edition, S. Chand & Co, 2010.
- 3. Van Valkenberg, "Network analysis", 3rd Edition, Prentice Hall of India, 2011.
- 4. V. N. Mittal, "Basic Electrical Engg.", 10th edition, 2009.
- 5. B. R. Patil, "Basic Electrical and Electronics Engineering", 2nd edition, Oxford University Press2013.
- 6. Dr. K Uma Rao, Dr. A. Jayalaxmi, "Basic Electrical Engineering", Pearson Publication, 2011
- 7. D. C. Kulshreshtha, "Basic Electrical Engineering", 3rd edition, Tata McGraw-Hill, 2013.

PROGRAMMING IN C				
Branch : ENC/EE/IT/CST	Sem: I	Lectures: 4 Hr	Credit: 4	

Objective :

- This course is designed to provide a comprehensive study of the C programming language. It stresses the strengths of C, which provide students with the means of writing efficient, maintainable, and portable code.
- The nature of C language is emphasized in the wide variety of examples and applications.
- To learn and acquire art of computer programming
- To know about some popular programming languages and how to choose Programming language for solving a problem.

Modulo	Sr		No. of	Weight	
No	No	Topic and Details	Lectures	-age	
110.	INU		assigned	in %	
Ι	1	Introduction and Basic notation: Flowcharts, algorithms, importance of C, Basic structure of C programs. Constants such as integer, real, character, string, and backslash character, variables, declaration of variables, Data types such as fundamental, user defined, and derived, user defined type declaration, assignment statement, defining symbolic constants, Operators, different types of operators such as arithmetic, relational, logical, assignment, increment, decrement, conditional, bitwise, and special, Expression, precedence of arithmetic operator, computational problems, type conversions in expression, different rules of conversion, casting a value, operator precedence and associativity.	15	25	
	2	Input – Output Functions: different format specifiers, formatted input function scanf (), other input functions such as getchar (), getch(), getch(), gets(), formatted output function printf(), other output functions such as putchar (), puts() different character test functions.			
П	1	Decision Making and Branching: Simple if statement, the if-else statement, Nested if else statements, the else if ladder, the switch statement, goto statement, continue statement, break statement, Loop: loops, different types of loop such as entry control, and exit control, the while statement, the do statement, the for statement, nested for loop jumps in loops.	15	25	
III	1 Arrays: Definition, one-dimensional array, general form of array declaration, initialization of array, two-dimensional array, initializing two-dimensional array, multidimensional array, applications of array, Strings: Reading a string, writing a string, different string handling functions such as strcat(), strcmp(), strcpy(), and strlen(). 15				
	2	Functions: Different types of functions such as library and user defined, difference between them, need of function, advantages of functions, declaration of a function, function call, definition of a function, return values and their types, category of a function, void function, nesting of functions, recursion, function with array, scope			

		of a variable, internal and external variable, storage classes such as automatic, external, static, register.		
	1	variable, structures initialization, arrays of structures, arrays within structure, structures within structures, structures and functions, unions, bit fields.		
IV	2	Pointers: Why pointers, accessing the address of a variable, pointer declaration, pointer initialization, accessing a variable through its pointer, pointer to pointer, pointer expressions, passing address to a function(call by reference), function returning pointers, pointers and arrays, passing array elements to a function, pointer and two dimensional array, pointer and three dimensional array, arrays of pointers, pointers and structure.	15	25
	3	File Management: Defining and opening a file, closing a file, Input/ Output operations on files, structure storage in file.		
		TOTAL	60	100

Text / Reference Books:

- 1. E. Balgurusamy, "Programming in ANSI C", 6th edition, Tata McGraw Hill, 2013.
- 2. Yashavant Kanetkar, "Let Us C", 13th edition, BPB Publications, 2013.
- 3. P.B. Mahapatra, "Thinking in C", 2nd edition, Wheeler Publishing, 1997.
- 4. Yashavant Kanetkar, "Understanding Pointers in C", 4th edition, BPB Publication., 2013.
- 5. Harbert Schildt, "C : The Complete Reference", 4th edition, Tata McGraw Hill, 2005.

LABS/ TUTORIALS FOR SEMESTER I

APPLIED SCIENCE LAB – I				
Branch : ENC/EE/IT/CST	Sem: I	Practical Hrs.: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	To understand the concept of fiber optics, junction diode,	
	lasers, Diffraction and interference.	
	Determination of hardness of water, alkalinity, percentage	
	of chlorine in bleaching powder, COD, acid value and	
	saponification value of lubricant, Study of Beer-Lambert's	
	law	

Branch : ENC/EE/IT/CST Sem: I Practical Hrs: 2Hr Credit: 2	ELECTRICAL CIRCUITS LAB					
	Branch : ENC/EE/IT/CST	Sem: I	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus
1	Objective:-Students should understand the concepts of
	network theorems and its verifications.
	Practicals should consist of the verification of the various
	theorems applicable to the circuit, verification of
	Kirchhoff's laws, charging and discharging of the
	capacitors, testing of the transformers.
	Sources of energy, Power calculation/estimation of a
	particular setup, Stabilizer

C PROGRAMMING LAB				
Branch : ENC/EE/IT/CST	Sem: I	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	Introduction to Linux operating system. Problem solving	
	techniques, flowchart Drawing, Algorithm development.	
	Use of these techniques for solving problems using C	
	language.	

WORKSHOP-I				
Branch : ENC/EE/IT/CST	Sem: I	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	Workshop consist of the jobs to be done in Mechanical	
	Engineering	

ENGINEERING DRAWING TUTORIAL				
Branch : ENC/EE/IT/CST	Sem: I	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus
1	Sheet-1: engineering curves (o4 problems)
	Sheet -2: Orthographic projection.(2 problems).
	Sheet -3: Orthographic projection. (2 problems).
	Sheet- 4: Isometric Projections (2 problems).
	One A-3 size sketch book consisting of:-
	1. 4 problems each from Projection of Curves, Lines,
	Planes and Solids.
	2. 4 problems from orthographic projection.
	3. 4 problems each from Isometric projections.

ENGINEERING MATHEMATICS – II

- II

Branch : ENC/EE/IT/CST Sem: I

Sem: II Lectures: 4 Hr

Credit: 4

Objective : On completion of the course, the student will have:

• Confidence in using mathematics to analyze and solve problems both in academic and technical field

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weight -age in %
Ι	1	Differential equations - Differential equation of 1st order and 1st degree, Linear differential equations, Bernoulli's equations. Exact differential equations, Integrating factors.		
	2	 Differential equations - Differential equations of higher order. (Linear equations) Differential operator D, Solutions of f(D)y=X Linear differential equations with constant and variable coefficients. (Cauchy Linear Equations and Legendre's Linear equations). Applications (where the differential equation is given) in Engg. Field (first order and higher order) 	15	25
	1	Vector Algebra – Product of three or more vectors, La-Grange's Identity, Application Engineering field		
П	2	Vector Calculus Vector differentiation – rules and theorems on vector differentiation Scalar point functions and vector point functions, gradient, divergent and curl and applications Solenoid and irrotational fields, scalar potential of irrotational vectors, Laplace's equations in harmonic function - applications in engineering.	15	25
Ш	1	Integral Calculus – Curve tracing (Standard curves) Rectification (Arc length). Double Integrals –Evaluation, Change of order of integration, double integration of polar coordinates, Application of single and double integration – mass and volume, Triple integration, Evaluation and applications	15	25
IV	1	Differentiation Under Integral Sign – Theorems on differentiation under integral sign (without proof). Application in evaluating integrals		
	2	Error Functions –Error functions and its properties, problems Beta And Gamma Functions – beta and gamma functions, properties,	15	25
	3	Relation between beta & gamma functions, Duplication formula and problems based on it, applications in engineering.		
		TOTAL	60	100

Text / Reference Book:

- 1. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 41th edition, 2011.
- 2. P.N.Wartikar & J. N. Wartikar, "Elements of Applied Mathematics", Pune Vidyarthi Griha Prakashan, 1st edition, 2008.
- 3. Shanti Narayan, "Differential Calculus", S. Chand, 14th Edition, 2010.
- 4. Murry Spiegal, "Vector Analysis", 2nd edition, 2010.
- 5. Edwin Kreyszig, "Advance Engg. Mathematics", New Age International (P) Ltd, 5th Edition, 2011.

APPLIED SCIENCE – II					
Branch : ENC/EE/IT/CST	Sem: II	Lectures: 4 Hr	Credit: 4		

Objective : On completion of the course, the student will be able to

- To understand the crystal structure of solids, conductors, semiconductors, magnetic and superconductor materials, properties of these materials which are responsible for their applications, theories to understand their behavior etc.
- To study the polymers, alloys, various engineered materials and nanomaterials and their applications in various fields.
- The topics on motion and mechanics are useful in understanding concepts of motion, velocity, impulse and applications such as recoil of gun, motion of lift, potential, kinetic energy, torque etc.
- Approach to demonstrate the working of electrodes, their behavior and differentiate various types of corrosion, gain knowledge on control measures associated with corrosion.
- To gain knowledge about different types of fuels and understand the terminologies involved in the field of fuel and combustion.

Module No.	Sr. No	Topics and Details	No. of Lectures assigned	Weight -age in %
Ι	1	Crystal structure: Crystallography: Space lattice, Unit Cell, Lattice parameters, Bravais lattices and Crystal systems, Cubic crystal system & lattices; Density & Packing Fraction; Miller indices of crystallographic planes & directions; interplanar distance; Diamond structure, NaCl structure, HCP structure, BaTiO3 structure; Ligancy and Critical radius ratio; Determination of crystal structure using X-ray diffraction techniques viz. Laue method, rotating crystal method (Bragg method) & powder method; Real crystals & point defects; photonic crystals; Liquid crystal phases and application in LCD (with brief introduction of optical polarization).	15	25
	2	Electromagnetic Theory (EMT): Motion of Charged Particles in crossed electric & magnetic fields, Velocity Selector & Magnetic focussing, Gauss law, continuity equation, inconsistency in Ampere's Law, Maxwell's equations, poynting vector, Poynting Theorem (Statement only), propagation of plane electromagnetic waves in conducting and non-conducting medium.Cathode ray tube (CRT); Cathode ray Oscilloscope (CRO); Application of CRO.		
	1	Mechanics: Central and non-central forces, Inverse square force, SHM, Damped, undamped and forced Oscillations. Special theory of Relativity: Frame of reference, Michelson-Morley experiment, basic postulates of special relativity, Lorentz transformations (space – time coordinates & velocity only), mass energy relation.		
II	2	 Physics of some Technologically important Materials: Magnetic materials: Definition of terms – classification of magnetic materials and properties – domain theory of ferromagnetism- hard and soft magnetic materials – applications. Conductors: classical free electron theory of metals. Quantum theory – Fermi distribution function – Effect of temperature on 	15	25

		Fermi Function – Density of energy states – carrier concentration in		
		metals.		
		semiconductors: Introduction to band theory, metals,		
		conductivity and mobility of charge carriers concepts of Fermi		
		level Fermi level in intrinsic and extrinsic semiconductors		
		semiconductor diodes		
		Superconductors: definition – Meissner effect – type I & II		
		superconductors $-$ BCS theory (qualitative) $-$ high temperature		
		superconductors – Josephson effect – quantum interference		
		(qualitative) = SOUID = applications		
		Nanomaterials: Introduction to nano-science and nanotechnology:		
		Two main approaches in nanotechnology -Bottom up technique and		
		top down technique ⁻ Tools used in nanotechnology such as Scanning		
		electron microscope, Scanning Tunneling Microscope, Atomic		
		Force Microscope. Nano materials: Methods to produce		
		nanomaterials; Applications of nanomaterials; Different forms of		
		carbon nanoparticles, carbon nanotubes, properties and applications.		
		Polymers and Composites: Introduction to polymers,		
		Functionality, Degree of polymerization, Linear, branched and		
		cross-linked polymers, Tacticity of polymers, Homo and		
		Copolymers (Classification based on repeat unit), Thermoplastic and		
		Thermosetting plastic. Ingredients of the plastic (Compounding of		
	1	plastic.) Fabrication (moulding) of plastic. Preparation, properties		
		and uses of Phenol formaldehyde, PMMA, Kevlar. Glass transition		
		temperatures, Conducting Polymers: Properties and applications.		
		Rubbers: Natural rubber, Drawbacks of natural rubber,		
		vulcanization of rubber, Preparation, properties and uses of Buna-S,		
		Silicone and Polyurethane rubber. Composites: Classification, Fibre		
		and particle reinforced composites.		
		Phase Rule and Alloys: Gibb's Phase Rule, Explanation, One		
III		Component System (Water), Reduced Phase Rule, Two Component	15	25
		System (Pb-Ag), Pattinson's process, applications and Limitations.		
		• Introduction, purpose of making alloys, Ferrous Alloys, plain		
		carbon steel, heat resisting steels, stainless steels (corrosion		
		resistant steels), effect of the alloying element, Ni, Cr, Co, Mg,		
		Mo, w, and v.		
	2	• Non-Ferrous Alloys- Alloys of Al – i) Duralumin ii)		
		Magnalumin. Alloys of Cu-Brasses - i) Commercial brass ii)		
		German Silver. Bronzes - i) Gun metal ii) High - phosphorus		
		bronze. Alloys of Pb- i) Wood's metal. ii) Tinman's solders.		
		Their composition, properties & uses. Metallic glasses:		
		preparation, properties and applications. Shape memory alloys		
		(SMA)		

Text /Reference Books:

- 1. Applied Solid State Physics Rajnikant, Wiley india
- 2. Engineering Physics R.K.Gaur & S.L. Gupta, Dhanpat Rai publications, 8th edition, 2014.
- 3. Concepts of Modern Physics- Arther Beiser, Tata Mcgraw Hill, 13th edition, 2013.
- 4. Concept of physics (I & II): H. C. Verma
- 5. Engineering Chemistry Jain & Jain, Dhanpat Rai, 5th edition, 2009.
- 6. Engineering Chemistry Dara & Dara, S Chand, 5th edition, 1996
- 7. A Text Book of Engineering Chemistry Shashi Chawla (Dhanpat Rai)

ELECTRONIC DEVICES Branch : ENC/EE/IT/CST Sem: II Lectures: 4 Hr Credit: 4

Objective : On the completion of this course, students will be able to

- Acquire knowledge about physics of basic semiconductor devices
 - Understand different electronic devices
 - Analyze characteristic of different semiconductor devices
 - Knowledge about advanced semiconductor devices and their applications

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weight -age in %
	1	Introduction to Semiconductor: mobility and conductivity, intrinsic semiconductor, donor and acceptor impurities, Fermi level, Drift currents and Diffusion currents, Energy Band Diagrams		
Ι	2	Semiconductor Diodes:- PN junction, Depletion layer, characteristics, Piece-wise linear characteristics & equivalent circuits, Diode resistance, Capacitance, switching time, Small signal models of diodes	15	25
	3	Diode Application: Diode clipping, Clamping types of biasing in detail, voltage multiplying circuits.		
	1	Varactor diode: Working and characteristics, Tunnel diode: V- I Characteristics and working, TED (Transferred Electron Device): Basic concept, Negative differential resistance, IMPATT: Static and Dynamic Characteristics	15	25
11	2	Regulators:- Rectifiers (half, full, center tapped and bridge) with its detail analysis, Filters (C,L,LC,CLC) with its analysis in detail, Zener diodes and its regulation, regulators IC 78XX and 79XX	15	25
Ш	1	BJT:- Construction and types, characteristics, BJT as a amplifier, CB, CE, CC Configuration ,Biasing Types, dc analysis and stability factor, DC load line and Ac load line	15	25
IV	1	JFET:- Construction and working with its characteristics FET as a amplifier, CS, CD, CG, configuration Biasing Types, Low frequency small signal ac equivalent circuit of JFET amplifiers		
	2	Structure and physical operation of Enhancement type MOSFET. The Depletion Type MOSFET ,V-I and CV characteristics, Channel length modulation, Short Channel effects, MOSFET Model MESFET: Device structure, principle of operation, V-I characteristics, High frequency performance	15	25
		TOTAL	60	100

Text /Reference Books

- 1. Boylstead and Nshelasky, "Electronic Devices and Circuits", PHP, 11th Edition, 2013.
- 2. Milman Grabel, "Microelectronics", McGraw Hill, 27th Edition, 2012.
- 3. Bhargav Gupta, "Basic Electronics and Linear Circuits", 34th edition, 2002.
- 4. Bell, David A. "Electronic Devices & Circuits" Oxford, 5th edition, 2013.
- 5. S Slivahanan and N. Suresh Kumar, "Electronic Devices and Circuits", McGraw Hill, 3rd edition, 2012.

MECHANICS AND THERMODYNAMICS

Branch : ENC/EE/IT/CSTSem: IILectures: 4 HrCredit: 4Objective - Te develop the ability in the engineering student to undevelop the ability in the engineering student to undevelop the engineering student to und

Objective : To develop the ability, in the engineering student, to understand, formulate, and solve a given problem in a logical manner and to apply it to solve a few basic problems in Mechanics and Thermodynamics

Module	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
UNIT I	1	MECHANICS- Force System– Fundamental concepts, force, characteristic of a force, resolution of a force, resultant of coplanar concurrent force system, method of resolution and composition, resultant of non-coplanar concurrent force system, principle of moments, resultant of coplanar parallel force system, Couple	7	10
	2	EQUILLIBRIUM – Free body diagram (fad), conditions of equilibrium for a concurrent coplanar force system, Lami's theorem, and support reactions.	7	10
UNIT	3	CENTRE OF GRAVITY – Methods to determine centre of gravity, problems based on plane laminate, problems on solids.	7	10
II	4	ANALYSIS OF TRUSSES - Types of supports, method of joints, method of sections, comparison between method of joints and method of sections	7	10
UNIT	5	FRICTION – Introduction, types of friction, concept of dry friction, types of friction problems, laws of friction, problems	7	10
	6	ENGINEERING THERMODYNAMICS Introduction and Basic concepts, Thermodynamics and its laws, classification of system, macroscopic and microscopic view of a system, Thermodynamic process, Quasi static process, Pressure, Temperature, Volume, Numerical.	6	12
	7	I-law of Thermodynamics- statement, Work , Energy, Heat, Law of conservation of Energy, Heat & Work, path function, specific heats, Numerical, Equation of steady flow, Non flow processes, Limitations of I-law of Thermodynamics, PMM-I	6	12
UNIT IV	8	II-law of Thermodynamics, statement, Kelvin Planck Statement, Claudius Statement, PMM-II, Heat engine, C.O.P., Refrigerator, Numerical, Thermal Efficiency, Carnot cycle, Limitations of Carnot cycle, Numerical on Carnot cycle	6	12
	9	Heat Transfer – basics, modes of heat transfer, Newton's Law of cooling, Fourier's law of heat conduction ,	7	14

Numerical,	Thermal	conductivity,	Heat	Transfer	by		
conduction,	Heat Trar	nsfer by con-	vection	and radi	ation,		
Numerical,	Heat Trans	sfer through a	composit	e slab, l	Radial		
Heat Trans	fer through	a thick cyli	nder, N	lumerical,	Heat		
sink, basic c	sink, basic concepts, applications.						
TOTAL						60	100

Text Books:

"Engineering Mechanics" by R.S.Khurmi, Scand publications.
 "Engineering Mechanics" by Ramamruthum.

Reference Books:

- Thermal Engineering by Ballaney.
 Engineering Thermodynamics by P. K. Nag.

COMMUNICATION SKILLS – I						
Branch : ENC/EE/IT/CST	Sem: II	Lectures: 4 Hr	Credit: 4			
Objective : On completion of this course, students will be able to						

- Understand the various genres of communication
- Understand communicative behavior
- Build capacities for self-criticism and think of professional and linguistic growth
- Use LSRW skills for linguistic competence

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
I	1	Communication: Concept and meaning of communication, barriers to communication, methods of communication, techniques to improve communication.	15	25
	1	Summarization : Techniques to summarize a given passage to test comprehension and ability to present written matter in a brief and concise manner.		
п	2	Comprehension and vocabulary: Technical, scientific or general text with multiple-choice questions to test analytical skills, comprehension, expression, vocabulary and grammar (synonyms, antonyms, one-word substitution, word formation).	15	25
ш	1	Basic official correspondence : Principles of Correspondence, language and style in official letters, formats of letters, (complete-block, modified-block, semiblock) types of letters, (enquiry, replies to enquiries, claims and adjustments, application letters with bio-data)	15	25
IV	1	Technical writing : Framing definitions, classification and description of objects, explanation of a process, writing instructions.	15	25
		Oral Communication: Topics to be assigned for speech practice in the form of elocution and debates to test diction, modulation, fluency and non-verbal communication.		Assessment
		TOTAL	60	100

Text / Reference Books:

- 1. Business correspondence & report writing R.C.Sharma & Krishna Mohan, Tata McGraw Hill, 4th edition, 2011.
- 2. Rai & Rai Business Communication (Revised Edition), , Himalaya Publishing House. Lesiker & Petit: Business Communication – McGraw Hill Publications, 3rd edition, 2008.

- 3. Modern Business Correspondence, McCommas & Satterwhite, Sixth Edition, McGraw Hill Publications.
- English for Engineers & Technologists: A skills approach. (Books 1 and 2) Course Authors (Humanities and Social Sciences Division, Anna University, Madras. Orient Longman. (Mainly for comprehension.
- 5. Technical Writing, Eisenberg, Anne, McGraw Hill Publications. (Teacher reference only)
- 6. Technical Writing & Professional Communication, Huckins, Thomas, McGraw Hill publications, 2nd edition, 1991.
- 7. Written Communication, Freeman, Sarah, Orient Longman.

LABS/ TUTORIALS FOR SEMESTER II

APPLIED SCIENCE LAB II				
Branch : ENC/EE/IT/CST	Sem: II	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus
1	To learn the estimation of copper in brass, iron, manganese.
	Synthesis of polymer.
	To study the factors affecting corrosion
	To estimate the calorific value of a fuel
	Study of various Lasers
	characteristics of photo electric devices
	to understand the concepts involved in Newton's ring and air
	wedge film
	study of spectrometer
	study of crystal structures

ELECTRONIC DEVICES LAB						
Branch : ENC/EE/IT/CST	Sem: II	Practical Hrs: 2Hr	Credit: 2			

Sr. No	Detail Syllabus	
1	Study and identification of electronics devices and components,	
	Basic construction and use of common measuring Instruments,	
	Characteristics of the various electronics two terminal and three	
	terminal devices, study of half wave and full wave rectifier using	
	diodes, filters, application of diode clippers, clampers.	
	BJT characteristic, BJT as amplifier characteristics of transistors	
	FET	

INTRODUCTION TO COMPUTATIONAL TECHNIQUES					
Branch : ENC/EE/IT/CST	Sem: II	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus						
1	Practical	using	Octave/MATLAB	to	understand	the	
	computational techniques.						

WORKSHOP-II					
Branch : ENC/EE/IT/CST	Sem: II	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	
1	Identify different types of cables & test it.	
2	Identify different types of connectors, Switches and Fuses & Discover their application.	
3	Identify different types of MCB with ratings, fuses and relays and discover their usage.	
4	i) Identify, find value using color code chart and test different types of resistors.	
	ii) Identify, find value and test different types of capacitors.	
	iii) Identify, find value and test different types of Inductors.	
5	Identify Various IC packages and SMD components.	
6	i) Interpret data sheet of various P-N junction diode, BJT and FET	
	ii) Interpret data sheet of various IC and SMD components.	
7	Study of different network connectivity devices used to establish computer network.	
	i) NIC(Network interface Card)	
	ii) The Hub	
	iii) The Switch	
	iv) The Router	
0	v) The Gateway	
ð	i) Study soldering and disordering of PCB	
	i) Study FCB making Artwork using Software.	

MECHANICS AND THERMODYNAMICS LAB				
Branch : ENC/EE/IT/CST	Sem: II	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	1. Polygon law of coplanar forces.	
	2. Non concurrent non parallel (general).	
	3. Bell crank lever.	
	4. Support reaction for beam	
	5. Inclined plane (to determine coefficient of friction).	
	6. Simple / compound pendulum.	
	7. Collision of elastic bodies (Law of conservation of momentum).	
	8. Moment of Inertia of fly wheel.	
	Any other experiment based on the syllabus.	

ENGINEERING MATHEMATICS – III

Branch : ENC/EE/IT/CST Sem: III

I Lectures: 4 Hr

Credit: 4

Objective : On completion of the course, the student will have:

- Good Knowledge of Series and Transforms
- Confidence in using mathematics to analyze and solve problems both in academic and technical field
- Skill in Formulating and analyzing mathematical problems

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weigh -tage in %
	1	 Laplace Transform - introduction Definition, properties with regards to summation, differentiation and integration. Laplace Transform of standard functions. Theorems on Laplace Transform Shifting properties. Laplace Transform of functions of the form t*f(t), f(t) /t. 		
Ι	2	Inverse Laplace Transform : Evaluation of inverse Laplace transform (by standard formulae and partial fraction method) Laplace Transform of periodic functions, step functions, Dirac Delta functions Convolution integral and its application in finding the inverse Laplace Transform. Solving differential equation by Laplace Transform.	15	25
Π	1	 Fourier series – definition and conditions for its existence, Evaluation of Fourier coefficients. Even and Odd functions. Evaluation of Fourier series of even and odd functions. Half range sine and cosine series, Parseval's theorem and its relations. Complex form of Fourier series, Introduction to Fourier Integrals. 	15	25
	2	 Fourier Integrals and Transforms: Derivation of Fourier Integrals, Fourier transform, Sine transform and cosine transform – properties and its elementary applications. Parseval's identity and evaluation of definite integrals by using it. Orthogonal functions, expression of function in a series of orthogonal functions. 		
III	1	Complex number – representation in Cartesian, Polar and Exponential forms. De – Moiver's Theorem and its application to complex numbers. Hyperbolic functions.		
	2	Complex variables – Continuity and Differentiability of functions of complex variables. Necessary and sufficient conditions for a function to be analytic (Cauchy – Riemann equations in Cartesian and Polar coordinate system with proof). Determining the function $f(z)$ of complex variable from its real and	15	25

		imaginary parts using Cauchy – Riemann equations.		
	1	Mapping or Transformation: Conformal mapping and Bilinear		
		mapping – Geometrical representation of mapping.		
		Integration of Complex Variables Concept of line integral and its		
		relation with Riemann integral. Concept of point functions and path		
		independent functions.		
		Contour integration, Cauchy's theorem for analytic functions and its		
TV/		applications for multiply connected domains.	15	25
11	2	Cauchy's integral formula and nth derivative of a complex function.		23
		Morera's theorem, maximum modulus theorem.		
		Taylor's and Laurent's development of function of a complex		
		variable.		
		Singularities – isolated essential singularity and non-isolated		
		singularity. Poles, evaluation of residues. Residue theorem and its		
		application to evaluate real integrals.		
		TOTAL	60	100

Text/ Reference Books:

- 1. P. N. Wartikar & J. N. Wartikar, Elements of Applied Mathematics, 7th edition, Pune Vidyarthi Griha Prakashan, 2008.
- 2. B. S. Grewal, Higher Engineering Mathematics, 41th edition, Khanna Publishers, 2011.
- 3. Edwin Kreyszig, Advance Engg. Mathematics, 9th Edition, New Age International (P) Ltd; 2011.

DISCRETE ELECTRONICS AND CIRCUITS

	Branch : ENC/EE	Sem: III	Lectures: 4 Hr	Credit: 4
--	-----------------	----------	----------------	-----------

Objective : On the completion of this course, students will be able to

- Understand AC models, H-models, Pi models of semiconductor devices such as BJT, JFET and usefulness of these devices for various applications like amplifiers and oscillators
- Apply concepts of DC and AC modeling of semiconductor devices for the design and analysis.
- Understand theoretical concepts and verify through laboratory and simulation experiments.
- Deliver the core concepts and reinforce the analytical skills learned in Electronic Device
- Motivate students to use MOS Power and opto devices for designing and analyzing electronic circuits

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weight -age in %
Ι	1	Single stage Amplifiers : Hybrid transistor Model(h-parameters small signal low frequency),accurate model and analysis, Simplified h-model, approximate analysis of BJT Amplifiers(CE, CB, CC stages), Millers theorem. Emitter follower and high input impedance circuits-Bootstrapping principle-effect of biasing resistors. Hybrid Pi model of BJT, Approximations in hybrid Pi model, high frequency response of amplifiers JFET-Small signal model-Analysis of CS and CD stages.	15	25
	2	Design: Design of single stage RC Coupled amplifiers.		
п	1	Multistage Amplifiers : General characteristics of multistage amplifiers, Gain BW product, Methods of coupling, RC, Direct, transformer, Darlington Pair. Frequency response of RC coupled amplifier(BJT-CE,FET-CS)small signal transient response of amplifiers-rise and fall time, tilt or sag, square Wave testing of amplifiers.	15	25
	2	Design: Design of multistage RC Coupled amplifiers.		
	1	Feedback Amplifiers : concept of feedback, characteristics of negative feedback amplifiers, analysis of feedback amplifiers – voltage series, voltage shunt, current series, current shunt.		
ш	2	Oscillators : Classification of oscillators, Barkhausen's criterion, RC phase oscillators, Wien bridge oscillators, LC oscillators, Hartely and Collpits, crystal oscillators-series resonant(pierce)parallel resonant (miller)oscillators	15	25
IV	1	Multivibrators:TransistorizedbistableMultivibrators,commutating capacitors.		
	2	 Power amplifiers: Classification of power amplifiers, second harmonic distortion. push pull and complimentary symmetry stages-cross over distortion, analysis of power amplifiers. Power and opto devices: Diac, Triac, UJT, UJT relaxation 	15	25
	3	oscillator, LDR, phototransistor- characteristics and applications.		
		TOTAL	60	100

Text / Reference Books:

- 1. Milliman Halkies, "Integrated Electronics", 2nd Edition, McGraw Hill, 2010.
- 2. Boylsted and Nashlsky, "Electronics devices and circuits" 11th Edition, PHI, 2013.
- 3. Salivahanan, S & Kumar, N, "Electronic Devices & Circuits", 3rd edition, McGraw Hill, 2012.
- 4. David Bell, "Electronics Devices and circuits", 5th Reprint, PHI, 2013.

DIGITAL LOGIC CIRCUITS				
Branch : ENC/EE/CST/IT	Sem: III	Lectures: 4 Hr	Credit: 4	

Objective : On the completion of this course, students will be able to

- Learn the basics of number systems, Boolean algebra and the methods for simplifying Boolean expressions
- Understand the concept of the logic gates, the procedures for the analysis and design of combinational circuits and sequential circuits
- Discuss the various applications of flip-flops and study the different shift registers
- Understand the concept of memories, various logic families, programmable logic devices

Module	Sr		No. of	Waightaga
No	No	Topic and Details	Lectures	in %
110.	110		assigned	III /0
Ι	1	Concept of Digital and Analog circuit Diodes and transistors as switch in Digital Circuits, Applications of Digital Logic circuits, Positive and negative logic.		
	2	Logic Gates:- OR, AND, NOT, NOR, NAND, EX-OR, EX-NOR. Realization of Boolean expression using gates. De- Morgan's Theorems. Reduction Techniques: Laws of Boolean algebra, K-map reduction technique SOP & POS using universal gates, K-map using two, three, four and five variables, Duality theorem (pairs, quads, rolling, overlapping etc)	15	25
	3	Combinational Circuits (Data Processing Circuits) Encoders and Decoders IC7445,IC 7448 Decoder drivers: seven segment display IC 7446, IC 7447, IC 7448.decimal to BCD encoder IC 74147. Multiplexers and Demultiplexers: IC 74150,IC 74151 and IC 74155		
Π	1	Arithmetic Circuits:-Half and full adder, Half and full subtractor. B421 adder-subtractor, BCD adder subtractor, XS-3 adder, 4 bit parallel binary adder-subtractor.8421 adder-subtractor using IC 7483, BCD adder using IC7483, XS-3 adder using IC 7483 comparator.	15	25
	2	Sequential Circuit :- Flip-flops R-S, JK, D, T, master slave JK FF their Properties and truth tables conversion of one type of FF into another without using K-maps. Timing diagrams, Design of sequential circuits.	15	25
III	1	Applications of flip flops : Counters- Principles of working of a 3-bit ripple counter, synchronous counter, preset table counter, mod-3, mod-6, mod-5, mod-7, mod-10, mod-12, using decoding gates. Ring counter, Twisted ring counter, Glitch and gating of a counter. IC7490, IC7493, IC7495, IC74193.	15	25
	2	Shift registers :-Principles of working of buffer register, shift-left, shift-right register. Four types of register: SISO, SIPO, PISO, PIPO, Typical shift register. Mode controlled shift register.		

IV	1	 Memories: Classification of characteristics of memories. Methods of address decoding, memory cells. ROM memories:- Masked ROM, PROM, EPROM, EEPROM RAM memories:- TTL RAM, NMOS RAM, Dynamic RAM, SRAM(Asynchronous, Synchronous burst, Zero Bus Turnaround (ZBT)) Logic families:- Various logic families, their properties, comparison Implementation using programmable devices (ROM, PLA ,PAL , FPGA) 	15	25
		TOTAL	60	100

Text / Reference Books

- 1. H. Taub and D.Schilling, "Digital Integrated Electronics", McGraw Hill, 2009
- 2. Malvino Leach, "Digital Electronics", 2nd edition, PHI, 2013.
- 3. Willam Gotmann, "Digital Electronics-An Intro. to theory & Practice", 2nd edition, PHI, 2009.
- 4. Tocci, "Digital Systems: Principles and Applications", 6thedition, PHI, 2006.
- 5. R,.P. Jain, "Modern Digital Electronics" 4th edition, Tata McGraw-Hill Education, 2010.
- 6. F.J.Hill and G.L.Peterson, "Switching Theory and logic Design", John Wiley, 1981.
- 7. Kumar Anand A., "Fundamentals of Digital Circuits", 3rd edition, PHI, 2014.
| ELECTRICAL NETWORK THEORY | | | | | | |
|---------------------------|----------|----------------|-----------|--|--|--|
| Branch : ENC/EE | Sem: III | Lectures: 4 Hr | Credit: 4 | | | |

Objective : This subject would constitute a basic building block for electrical engineers, in the understanding of

- Electric power and its steady state characteristics.
- Time and frequency domain analysis
- Electric current and conventions used to find the current characteristics

Such understanding would also help the engineer to design his system after analyzing the circuit under all conditions.

The students would be able to do the analysis of

- Graph Theory, Signal Flow Graph.
- Initial Conditions with respect to time domain analysis
- Laplace Transform applications with respect to network theory
- Transfer functions, Driving point functions, Poles and Zeros, Two port network to find various parameters for T and pi Section
- Lumped elements.

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
I	1	Network Topology: Graph-oriented, planar, sub-graph, concept of tree, incidence matrix, reduced incidence matrix, Tie-set /fundamental loops of graph, KVL equations for f-loops, rank, Cut-set & its orientation, KCL equations for cut-set, cut-set matrix, formulations of network equations, Networks with mutual inductances & controlled sources, Duality concept.	15 25	
	2	Signal Flow Graph: State Space Representation, Masson's Gain Formulae		
	1	Mathematical Modeling of Electrical Circuits: Ordinary differential equations.		
Π	2	State Variable Analysis: State equations and their formulations, equivalent source method& topological method, Time –Domain solution to state equations. Laplace transform and their application to networks.	15	25
III	1 Time Domain approach to electrical networks: 1 Transient responses to networks , General & particular solution-L & R-C network, Time constant ,DC forcing response, initial conditions in networks, RL, RC and RLC networks . Erequency Domain approach to Electrical Networks:		15	25
	2	Laplace Transform, Basic Properties, Transformed circuit, Applications of Laplace Transform with respect to electrical network		
IV	1	Two Port Networks: Z, Y, H, G, ABCD or transmission parameters, Inter-conversion of	15	25

2	Network functions of some typical networks, Pole-Zero Plot of		
	network functions, restrictions on Pole-Zero locations.		
	TOTAL	60	100

- 1. Gopal Bhise & Prem Chadha, "Engineering Network Analysis & filter design", 1st edition, Umesh Publication, 2009.
- 2. Van Valkenburg, "Network Analysis & Synthesis", 3rd edition, PHI Publication, 2014.
- 3. K. M. Soni, "Circuits & systems", S. K. Kataria & Sons Publications.

ELECTRONIC M	ELECTRONIC MEASUREMENTS AND INSTRUMENTATION					
Branch : ENC/EE Sem: III Lectures: 4 Hr Credit: 4						

Objective : On the completion of this course, students will be able to

- Understand performance criteria and design aspect for different measurement instruments
- Understand the classification, construction, working principle and application of various transducers
- Use Signal Generator, frequency counter, CRO and spectrum analyzer for appropriate measurement.

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1	Properties of Instruments, Properties of Measurements like average, mean, deviation and standards of Measurement		
I	2	Transducers Electrical Transducers, Active & Passive Transducers Resistive Transducer - Potentiometer, Resistance Pressure Transducer, Resistive Position Transducer Temperature Transducer - Resistance Thermometer, Thermistor, Thermo couple, RTD Inductive Transducer - Using Self Inductance, Variable Reluctance type, Differential Output Transducers, LVDT, RVDT Capacitive Transducer-Capacitive Pressure Transducer Photo Electric Transducer(Photo emissive, Photo Conductive, Photo Voltaic)	15	25
Π	1	Measurement of ResistanceWheatstone's Bridge, Kelvin's Double BridgeMeasurement of Inductance & CapacitanceMaxwell's Inductance bridge, Maxwell's Inductance &Capacitance Bridge, Hay's bridge , Anderson's Bridge,Desaugthy's Bridge, Schering Bridge,Q meters	15	25
Π	2	Analog Meters: Moving coil and Moving iron Ammeters & Voltmeters. Extension of ranges by using shunt, AC voltmeters, and true rms Meters, Digital Meter: Advantages of digital meters over analogue meters. Resolution & sensitivity of digital meters. Working principles of digital Voltmeter	15	25
	1	Oscilloscopes: Basic Working of CRO and types. Sampling CRO and digital storage oscilloscope (DSO).		
III	2	Signal generators: Low frequency oscillators and function generators, Wide range RF generators, synthesized function generators.	15	25

IV	1	 Measurement in the presence of noise: Lock in amplifiers, signal averages, Improvement of SNR with averaging. Computer aided Measurements: Measurement system architectures, Data acquisition cards and plug in instruments, IEEE 488 based instruments 	15	25
	2	Spectrum analyzers: Real time, FET based dynamic and super heterodyne spectrum analyzers, Optical spectrum analyzer and OTDR		
		TOTAL	60	100

- W. D. Cooper, "Electronic Instrumentation and Measurement Technique" 3rd Edition, Prentice Hall of India., 2014
- 2. A.K. Shawny, "Electronic Measurement and Instrumentation", 7th edition, 2011.
- 3. H. S. Kalsi, "Electronic Instrumentation", 3rd edition, Tata McGraw Hill, 2014.
- 4. Alan. S. Moris, "Principle of Measurement & Instrumentation", Prentice Hall of India.

ENVIRONMENTAL SCIENCE						
Branch : ENC/EESem: IIILectures: 4 HrCredit: 4						

Objective:

- To create awareness about the environment and its allied problems
- To identify and solve environmental problems as engineers
- Develop social responsibility towards environmental protection
- Inculcate attitude and values towards understanding and interdependence of man and nature and work towards sustainable development.

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1	The multidisciplinary nature of environmental studies, definition, scope and importance, need for public awareness.		
I	2	Natural resource:- renewable and non-renewable resources, associated problems with the resources such as Forest, water, minerals, food, energy, land	15	25
П	1	Ecosystem:- concept, structure, functions, producers, consumers and decomposers, energy, ecological succession, forest ecosystem, grass land ecosystem, Desert ecosystem, aquatic ecosystem.	15	25
11	2	Biodiversity and its conservation: Introduction, definition, genetic species and ecosystem diversity, bio-geographical classification of India, value of biodiversity.		23
	1	Environmental pollution:- Causes effects and control measures in Air pollution, water pollution, soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear Hazards		
ш	2	Social issues and environment:- From unsustainable to sustainable development, Urban problem related to energy, Environmental ethics issues and problem solution, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, consumerism and waste products, environment protection act and various acts related to Air pollution, water pollution and wild life protection, forest conservation, public awareness	15	25
IV	Introduction to Green IT, internal assessment for organization for green IT policy, understanding carbon footprints, carbon offsetting, carbon neutrality and carbon trading, audit of organization for existing IT functions and process, risk issues and opportunities, sustainable IT procurement process, reuse, recyle and reprocess of IT assets, development of green IT action plan, roles and responsibilities with green IT, 15		15	25
	2	Electronics waste and its disposals		
		TOTAL	60	100

- 1. R. Rajagopalan, "Environmental Studies", 2nd Edition, Oxford University Press, 2012.
- 2. Kurian Joseph & Nagendran, "Essentials of Environmental Studies", Pearson Education.
- 3. Godfrey Boyle, "Renewable Energy", Oxford Publications.
- 4. Kaushik and Kaushik, "Perspective Of Environmental Studies", New Age International.
- 5. Anandita Basak, "Environmental Studies", 1st edition, Pearson Education, 2009.
- 6. Benny Joseph, "Environmental Studies", Tata McGraw Hill.

LABS / TUTORIALS FOR SEMESTER III

DISCRETE ELECTRONICS LAB

Branch : ENC/EE

Sem: III Practical Hrs: 2Hr

Credit: 2

Sr. No	Detai	l Syllabus	
1	Hard	ware based	
	1.	Frequency response of Single Stage CE amplifier	
	2.	Frequency response of Single Stage CS amplifier	
	3.	Bootstrap Circuit	
	4.	UJT relaxation oscillator	
	5.	Bistable Multivibrator	
	6.	Monostable Multivibrator	
	7.	Phototransistor based applications	
	8.	Diac, Triac based applications	
	9.	Power Amplifiers	
2	Simu	lation Through PSPICE	
	10.	Frequency response of Single Stage CE amplifier	
	11.	Frequency response of Single Stage CS amplifier	
	12.	Bootstrap Circuit	
	13.	Frequency response of two Stage CE amplifier	
	14.	Bistable Multivibrator	
	15.	Monostable Multivibrator	
	16.	Design of RC phase shift oscillators	
	17.	Design of Wein-Bridge oscillators	

LOGIC CIRCUIT LAB					
Branch : ENC/EE/CST/IT	Sem: III	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus			
	To implement basic gates			
	To implement universal gates			
	To implement adder (half and full)			
	To implement subtractor (half and full)			
	To implement multiplexer			
	To implement decoder			
	To implement flip flop			
	To implement counter			
	To implement shift register			

MEASUREMENT AND INSTRUMENTATION LAB						
Branch : ENC/EE	Sem: III	Practical Hrs: 21	Ir Credit: 2			

Sr. No	Detail Syllabus	
	Study of CRO	
	Balanced and unbalanced condition of Bridges	
	Measurement using analog meters	
	Study characteristic of transducers	
	Study of digital storage oscilloscope	
	LCR Q meter	
	Study of Spectrum Analyzer	

ELECTRICAL NETWORK THEORY TUTORIAL						
Branch : ENC/EE		Sem: III	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	
	To solve problems based on Graph Theory	
	To solve problems based on Transient analysis	
	To solve problems based on Frequency domain analysis	
	To solve problems based on State variable analysis	
	To solve problems based on Parameters	
	To solve problems based on Signal Flow graph	
	To solve problems based on Transfer Function	

STATISTICAL THEORY OF COMMUNICATION

Branch : ENC/EE	Sem: IV	Lectures: 4 Hr	Credit: 4

Objective : On completion of the course, the student will have:

- Good knowledge of probability theory application in communication
- Good knowledge of various distributions and their properties as well as properties of a random sample.
- Good ability to identify structure and analyze Communication problems using probability theory.

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1	Introduction: The Analysis of Random Experiments, Probability in Electrical and Computer Engineering: Signal Detection and classification, speech Modeling and recognition, coding and data transmission, Computer Networks.		
I	2	The Probability Model: The Algebra of Events, Probability of Events ,Some Applications ,Conditional Probability and Bayes' Rule, Applications: The binary communication channel and Measuring information and coding.	15	25
	3	Random Variables and TransformationsDiscreteRandom Variables, Some Common DiscreteProbabilityDistributions, ContinuousRandom ContinuousProbabilityDensityFunctions,CDF andPDF for Discrete and Mixed Random Variables,TransformationofRandomVariables,DistributionsConditioned on an Event,Application:OptimalClassification.		
	1	Expectation, Moments, and Generating Functions: Expectation of a Random Variable, Moments of a Distribution, Generating Functions Application: Entropy and Source Coding		
Π	2	Two and More Random Variables Two Discrete Random Variables, Two Continuous Random Variables, Expectation and Correlation, Gaussian Random Variables, Multiple Random Variables, Sums of Some Common Random Variables, Random Vectors, Application: An Application to signal Detection.	15	25
III	1	Inequalities, Limit Theorems, and Parameter Estimation, Hypothesis Testing Inequalities, Convergence and Limit Theorems, Estimation of Parameters, Maximum Likelihood Estimation, Testing of	15	25

		Continuous-Time Markov Chains, Basic Queuing Theory		100
	2	Markov, Poisson, and Queueing Processes: The Poisson Model Discrete-Time Markov Chains		
IV	1	Random Processes: Random Process, First and Second Moments of a Random Process, Properties: Independence, stationarity, and Ergodicity, Power Spectral Density, Noise source, Response of Linear systems.	15	25
		Hypothesis (cases of large sample) Application: Signal Estimation		

- 1. M. O'Flynn, Harper & Row, "Probabilities, Random Variables and Random Processes"
- 2. S. P. Gupta, "Fundamental Statistics", Sultan Chand, 1998.
- Papoulis, Probability, Random Variables and Stochastic Processes, 4th edition, McGraw Hill, 2012.
- 4. H. Stark and J. W. Woods, "Probability, Random Processes and Estimation Theory for Engineers", 4th edition, 2011.

NUMERICAL METHODS AND LINEAR ALGEBRA Branch : ENC/EE Sem: IV Lectures: 4 Hr Credit: 4

Objective : On the completion of this course, students will be able to

- Develop and implement numerical methods for approximately solving problems from continuous mathematics
- Apply these methods to application problems of communication systems
- Understand the concept of linear algebra

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1	Solution to Linear Circuits using Gaussian and Crout's algorithms		
Ι	2	Solution to non-linear Circuits using Newton–Raphson's method, secant method, fixed point iteration method, and its convergence.	15	25
П	1	Transient analysis of the circuit using Euler's algorithm, trapezoidal and Adams Moulton algorithm.	15	25
	2	Solution to sparse matrix techniques		
III	1	Linear MappingsIntroduction , Mappings, Functions ,Linear Mappings (Linear Transformations) ,Kernel and Image of a Linear Mapping , Singular and Nonsingular Linear Mappings, Isomorphism ,Operations with Linear Mappings , Algebra A(V) of Linear OperatorsLinear Mappings and Matrices Introduction, Matrix Representation of a Linear Operator, Change of Basis, Similarity, Matrices and General Linear Mappings	15	25
IV	1	Inner Product Spaces, Orthogonality Introduction , Inner Product Spaces, Examples of Inner Product Spaces, Cauchy–Schwarz Inequality, Applications, Orthogonality, Orthogonal Sets and Bases , Gram–Schmidt Orthogonalisation Process, Orthogonal and Positive Definite Matrices, Complex Inner Product Spaces	15	25
		TOTAL	60	100

- 1. S. S. Sastry, "Introductory Methods of Numerical Analysis", 5th edition, PHI, 2013.
- 2. V. Rajaraman, "Computer Oriented Numerical Methods", 3rd edition, PHI ,2011
- 3. R. Raghuram, "Computer Simulation of Electronics Circuit"1st Edition, Wiley Eastern India, 1991
- 4. Seymour Lipschutz, Marc Lars Lipson, "Linear Algebra" 4th Edition, Schaum's Outline Series McGraw-Hill, 2009

SIGNALS AND SYSTEMS Branch : ENC/EE Sem: IV Lectures: 4 Hr Credit: 4 Objective : The students will be able to V V V

- Understand the properties of continuous and discrete time signals.
- Understand the properties of continuous and discrete time systems.
- Use mathematical model of signals for analysis.
- Represent a system by mathematical model.
- Analyze and predict the behavior of linear system.
- Use different tools in the time- and frequency- domain.

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1	Introduction to signals and systems :- Continuous and discrete time signals, digital signals, Introduction to standard signals Continuous and discrete time systems.		
I	2	Representation of signals :- Classification of Signals – Periodic/non-periodic, Deterministic and random, energy and power signals. Even/odd signals, causal/non-causal signals Basic operations on signals – Time reversing, time scaling, time shifting and amplitude scaling.	15	25
II	1	Time domain representation of systems :- Classification of systems:- causal/non-causal, Linear/nonlinear, time variant/time invariant, invertible/ noninvertible, stable/unstable Convolution:-Convolution sum, discrete- time convolution: linear and circular convolution		
	2	Analysis of continuous time signals and systems :- Laplace Transform analysis : Laplace transform of standard signals, ROC, properties of Laplace transform, analysis of CT-LTI system using Laplace transform. Continuous time Fourier Transform : Fourier transform of non-periodic signals, Frequency response of a system using Fourier Transform	15	25
ш	1	z-transforms :- Representation of continuous time signals by its sample - Sampling theorem – Reconstruction of a Signal from its samples, Basic principles of z-transform - z-transform definition – region of convergence – properties of ROC – Properties of z-transform, z- transform of basic signals, inverse z-transforms, Analysis of DTLTI system using z-transform, convergence of s-plane to z- plane, Relationship between z-transform and Laplace transform, Relationship between z-transform and Fourier transform.	15	25

IV	1	Introduction to Fourier series :- Exponential Fourier series, Trigonometric Fourier series, frequency response using Fourier series		25
	2	Sampling : Introduction, sampling theorem, different sampling techniques	15	25
	3	Introduction to wavelet transforms		
		TOTAL	60	100

- 1. Alan Oppenheim, Allan Willisky, "Signals and Systems", 2nd Edition, Pearson Education, 2013.
- R.F Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems", 4th Edition, Prentice Hall, 1998.
- 3. P. Ramesh Babu, "Signals and Systems", 4th Edition SciTech Publications Pvt. Ltd., 2013.
- 4. Simon Haykins, "Signal and Systems", 2nd edition., Wiley India, 2006.
- 5. H P Hsu, "Signals and Systems", TMH, 2006.
- 6. S. Salivahanan, "Digital Signal Processing", 2nd edition, TMH, 2010.

ANALOG CIRCUITS					
Branch : ENC/EE	Sem: IV	Lectures: 4 Hr	Credit: 4		
Objective : The students will be able to					

ents will be able to

- Understand the concept of multistage electronic Circuits and its design •
- Differentiate between discrete and integrated biasing techniques •
- Design different applications like frequency, nonlinear parameters •
- Learn about specialized power amplifier IC, timer IC and voltage regulator IC

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
Ι	1	Differential amplifier : Differential amplifier circuit configurations Dual/Single I/P balanced o/p, Dual/Single I/P unbalanced o/p, DC & Ac analysis, swamping resistors, constant current bias, current mirror, level shifter.		
	2	Operational Amplifiers: Block diagram of typical op-amp, schematic symbol, Ideal op-Amp, Op-Amp equivalent circuit, Types of Integrated circuits and package type. Open loop op-amp: Differential amplifier, inverting & non-inverting amplifier, transfer characteristics, Op-Amp parameters-DC –offset voltage & current ,compensation for offset voltage, AC parameters-CMRR, Slew rate, gain bandwidth product. thermal drift, noise	15	25
	1	Closed loop Op-Amp: Feedback configurations-Voltage series& voltage shunt feedback amplifier, inverting, non-inverting & differential Op-Amp, effect of f/b on different parameters, voltage follower & current to voltage converter.	15	25
11	2	Frequency Response: Frequency response of internally compensated & non –compensated op-amps, compensation for frequency, Op-Amp at high frequency, causes & effects of slew rate.	15	25
	1	Linear Applications: Peaking amplifier, summing amplifier, averaging amplifier, instrumentation amplifier, integrator & Differentiator, Log & Antilog Amplifier.		
III	2	Oscillators: Oscillator principle, Barkhausen criterion, Types: Phase Shift, wein Bridge, Quadrature oscillators, Waveform generators-Square, triangular & sweep generator, voltage controlled oscillator.	15	25
IV	1	Non-linear applications: Basic Comparator, Zero crossing detector, Schmitt trigger, window detector, V/F & F/V converters, Sample & hold circuits, voltage limiters, A-D & D-A converters, clippers & clampers, peak detector.	15	25
	2	Specialized IC applications : IC 555 timer –monostable Multivibrators & applications, Astable Multivibrators & applications.		

Phase locked loop: Operating principle, monolithic PLLs, IC565		
PLL applications.		
regulators		
Power Amplifiers: Monolithic power amplifiers, LM380 power amplifier.		
TOTAL	50	100

- 1. Ramakant Gayakwad, "Op-Amps and Linear Integrated Circuits", 4th edition, PHI, 2010
- 2. K.R. Botkar, "Integrated circuits", 9th edition, Khanna Publication, 2008.
- 3. Graeme Tobey, "Operational Amplifier, Design & applications", 21st printing, 1989.

ELECTROMAGNETIC FIELD THEORY					
Branch : ENC/EE	Sem: IV	Lectures: 4 Hr	Credit: 4		
Objective : On the completi	on of this course,	students will be able t	. 0		
Understand field concepts.					
• Apply Field concepts to wave Theory.					

• Understand basic of wave propagation in guided and unguided medium.

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
Ι	1	Introduction: Recent Trends in Electromagnetic, Application of Electromagnetic Waves, Wave fundamentals, Frequency bands,Phasors and complex numbers review. Review of vector analysis, Orthogonal coordinate systems:- Cartesian, cylindrical and spherical, differential volume elements for each	15	25
	2	Electrostatic : Maxwells equations for Electrostatics, Basic laws:- Coulomb's Law, derivation of fields for different cases, Charge distributions:- point, line and surface, Gauss's Law and its application to diff. cases, Divergence theorem, Electric scalar potential, Electric properties of dielectrics, Boundary conditions.		23
II	1	Magnetostatics : Quantities of interest, Basic laws:- Biot saverts Law, Current distributions, Convection & displacement Current, Guass's law for magnetism. Ampere's circuital law, Maxwell's equations for magnetostatics, stoke's theorem, Vector magnetic potential Magnetic Boundary Conditions, Faraday's law of Electromagnetic Inductance, Self inductance, Mutual Inductance.	15	25
	2	Maxwell's Equation : Maxwell's equations for time varying fields, Boundary conditions for Electromagnetic, Continuity equation, Pointing theorem		
III	1	 Plane wave Propagation:- Time harmonic fields, complex permittivity, Uniform plane wave in charge free medium, Types:- TEM, TE, TM, Relation between E & H Wave polarization:- linear, Circular, elliptical, Plane wave propagation in lossy medium, skin depth. Wave reflection and transmission 	15	25
	2	At normal incidence, at oblique incidence, reflectivity and transitivity		

IV	1	Transmission lines : Role of wavelength, fundamental modes of propagation, Lumped equivalent circuit, line parameters & equations, Types of line:- lossless & lossy Wave propagation on lossless line, Voltage reflection coefficient, standing waves , Input impedance Special Cases: Short circuited line, Open circuited line, Line as a circuit element, $\lambda/2$ line and Quarter Wave transformer, Matched termination Smith Chart: measurement of Input impedance, SWR, Voltage maxima and minima, admittance Impedance matching with	15	25
	2	Wave guides:- types- rectangular circular, Comparison between 2 wire line and waveguide, Propagation of waves in waveguides in rectangular waveguides (TEM, TE, TM) Propagation of TE and TM waves in rectangular waveguides, Various modes ,Propagation of TE and TM waves in Circular waveguides, Various modes.		
		TOTAL	60	100

- 1. E. C. Jordan & K. G Balmain, "Electromagnetic waves & Radiating systems", 2nd edition, Prentice Hall of India, Delhi, 2009.
- 2. Fawwaz T. Ulaby, "Fundamentals of Applied Electromagnetics" PHI Ltd 2011 Media edition.
- 3. M. Kulkarni, "Microwave Engg.", Umesh Publications 4th Edition 2010.
- 4. R. K. Shevgaonkar, "Electromagnetic waves", Tata McGraw Hill Publications 2010.
- 5. N. Narayana Rao, "Basic Electromagnetic with applications", Prentice Hall of India, New Delhi.
- 6. Ramo & Whinnery, "Fields and Waves in Communication Electronics", Wiley Eastern (1997)

COMPUTER ARCHITECTURE & ORGANIZATION

Branch : ENC/EESem: IVLectures: 4 HrCredit: 4

Objective : On the completion of this course, students will be able to

- Understand the basic building blocks of computer and their interconnection
- Study various input output devices, memories and CPU structures

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
	1	Introduction: Brief history of computers, basic building blocks of computer, organization & architecture, structure & functions, evolution of Pentium & power PC, various generations of computer evolutions, impact of VLSI on computer systems.		
I	2	Buses : Concept of buses, types of buses, concept of system bus, overview of various bus architectures used in computer, Peripheral Component Interconnect (PCI) bus, interconnection structures and bus interconnection, Bus control logic, bus arbitration techniques.	15	25
	3	Internal memory : Concept of memory, size, unit, and its organization, computer memory systems overview, hierarchy of memory in computer, memory device characteristics, random access memory, serial access memory, multilevel memories, address translation, memory allocation, advanced DRAM organization. Cache memory: – concept of cache, performance of cache, types of cache architectures, memory mapping techniques, and page replacement policies		
II	1	External memory : Construction and working principles of magnetic memories, magnetic disk, hard disk, magnetic tape, optical memory.		
	2	I/O Devices : Role of I/O devices in computer, overview of commonly used I/O devices such as keyboard, VDU, mouse. External devices, I/O module and its organization, various data transfer techniques – Programmed I/O, Interrupt driven I/O, Direct memory access (DMA), I/O channels and I/O Processors.	15	25
	3	Operating System Support : Operating system overview, role of operating systems in computer, scheduling, memory management, concept of virtual memory.		
III	1	CPU Organisation: The role of CPU, functions of CPU, CPU structure and CPU functions, processor organization, register organization inside CPU, instruction cycle, instruction pipelining, branch penalty, branch prediction,	15	25

		overview of Pentium processor		
		Data path design: Concept of data processing unit, Fixed-		
	2	point arithmetic: addition, subtraction, multiplication, and		
	2	division. Designing aspects related to arithmetic operations,		
		combinational ALU and sequential ALU, advanced ALU.		
		Control Circuit Design: Basic concepts related to control		
		unit, types and design of control circuit such as micro-		
	1	programmed control unit, and hard wired control unit,		
		microinstruction formats, microinstruction sequencing,		
		microinstruction execution, applications of		
IV		microprogramming.	15	25
1 V		System Organisation: Use of computer in commutations,	15	23
		serial communications and parallel communication, network		
	2	topologies, LAN and WAN in brief, various ways to improve		
		the speed of computer, concept of parallel processing, Flynn's		
		classification of parallel computers, benefits of parallel		
		processing, multiprocessing.		
		TOTAL	50	100

- 1. William Stallings, Computer Organization and Architecture, 9th Edition, PHI, 2014.
- 2. John P Hayes, Computer Architecture and Organization, 3rd Edition, McGraw Hill, 2013.
- 3. Andrew C. Tanenbaum, Structured Computer Organization, 6th Edition, PHI, 2014.
- 4. M. Morris Maw, Computer System Architecture, 3rd Edition, PHI, 2003.

LABS / TUTORIALS FOR SEMESTER IV

Sr. No	Detail Syllabus	
	Study various numerical methods and develop the	
	understanding of matrices	
	To implement methods to solve Nonlinear equations	
	To study transient analysis using numerical methods	
	To implement trapezoidal rule to find integral of given function	
	To implement various Linear mapping Techniques	
	To implement various matrix techniques	

SIGNALS AND SYSTEM TUTORIAL					
Branch : ENC/EE	Sem: IV	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	P
	(Some of the tutorials will be conducted in OCTAVE/MATLAB)	
	Tutorials will be conducted batchwise.	
	Following topics will be covered in tutorials:	
	Basic operations on Signals	
	Classification of Signals	
	Classification of Systems	
	Analysis of CT-LTI System	
	Analysis of DT-LTI System	
	• Use of Fourier transform/ Series to plot Frequency	
	Response.	

ANALOG CIRCUITS LAB					
Branch : ENC/EE	Sem: IV	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	
	Study of differential amplifier	
	Study of inverting & non inverting amplifier	
	Study of op-amp parameter	
	Study of summer, subtactor &average.	
	Study of integrator & differenior.	
	Study of wein bridge oscillator	
	Study of square, triangular & sawtooth wave generator	
	Study of 555 as monostable & astable multivibrator.	
	Study of op-amp as comparator & Schmitt trigger.	
	Study of 1st order LPF and HP filters.	
	Study of peak detector and sample and hold circuit.	

ELECTROMAGNETIC FIELD THEORY TUTORIAL Branch : ENC/EE Sem: IV Practical Hrs: 2Hr Credit: 2

Sr. No	Detail Syllabus	
	Recent Trends in Electromagnetic waves	
	Vector Analysis	
	Electrostatic	
	Magnetostatic	
	Maxwell's Equation	
	Uniform Plane Wave	
	Wave Reflection and Transmission.	
	Transmission Line	
	Waveguides	
	Simulation based on Transmission Line	
	Simulation based on Uniform Plane Wave	

MICROPROCESSORS – I					
Branch : ENC/EE	Sem: V	Lectures: 4 Hr	Credit: 4		
Objective: The learners will be able to:					

- Study Architecture of microprocessor 8085
- Details of all the Peripherals
- Study the interfacing of the peripherals with 8085

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
I	1	IntroductionofMicroprocessor:BriefhistoryofMicroprocessors, Basic building blocks of microcomputer systems.8085: Pin diagram and pin description, Internal architecture withfunctional blockdiagram.Registerorganizationinside8085		
	3	Interfacing devices - tri state buffer, decoder, and latch. Instruction set of 8085 : Study of instructions from instruction set of 8085. Grouping of instructions. Addressing modes of 8085 – their types with suitable examples. Programming of 8085 - Program development for 8085 using instruction set	15	25
	1	Stacks and subroutines : Concept of stack and stack pointer, use of PUSH, POP and other stack related instructions, subroutines, their types and execution of subroutines.		
II	2	Interrupts: Hardware and software interrupts, maskable and Non- maskable interrupts, vectored and non-vectored interrupts, interrupt structure of 8085, Instructions related to interrupt like EI, DI, RIM and SIM.	15	25
	1	I/O data transfer techniques : programmed I/O, interrupt driven I/O, DMA, data transfer with handshake signals and ready signals.		
111	2	 I/O device interfacing – I/O mapped I/O and memory mapped I/O techniques. Programmable I/O devices – study of 8155, 8355/8755, block diagram, pin functions and modes of operation. Programmable Peripheral Interface (PPI) 8255-block diagram, pin functions, features, modes of operations, interfacing with 8085. 	15	25
IV	1	Timers and DMA Controller: Programmable Interval Timer 8253/54- block diagram, pin function, features, modes of operations, interfacing with 8085. Programmable interrupt controller 8259-block diagram, pin function, features, modes of operation, interfacing with 8085. DMA Controller 8257- block diagram, pin function, features, modes of operation, interfacing with 8085.	15	25
	2	ADC/DAC interfacing: Study of ADC/DAC IC'S – 0800, 0808,0809,generation of various waveforms.Debugging tools: Assemblers, Logic Analyzers. 8085 Microprocessor based system Design.		

			TOTAL	60	100
--	--	--	-------	----	-----

Text / Reference Books :

- 1. R. S. Gaonkar, "Microprocessor", Penram International Publications, 6th edition, 2013.
- 2. Borole and Vibhute, "Microprocessor", Technova Publications, 5th edition, 2008.
- 3. A. P. Godse, "Microprocessor", Nirali Publications, 1st edition, 2000.
- 4. A .P. Godse, Gilmore, "Microprocessor", 2nd edition, McGraw Hill International.
- 5. Kenneth J. Ayala, 'The 8051Microcontroller", Penram International, 5th edition, 2014.

FILTERS THEORY							
Branch : ENC/EESem: VLectures: 4 HrCredit: 4							
Objective: On the completion of thi	s course, stud	ents will be able to					
• Understand the concept of fi	• Understand the concept of filter and different types of filter.						
Concept of network function	ns and their re	liability.					
• Solve the approximation pro	blems of diffe	erent filters.					
• Synthesis of active filter and passive filter.							
• Bi-quad circuits of positive feedback and negative filter.							
• Active networks synthesis by	y Passive Lad	der Structures.					

• Introduction to digital filters and their types.

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weight -age in %
I	1	Introduction to filters: Types of filters, Low pass, high pass, band pass and band reject filter, magnitude and phase response of it. Network function and driving point function. Comparison of Analog filters and digital filters: Analog filters: Concept of Approximation Theory Types of	15	25
	2	approximation filters, Mathematical analysis and synthesis of Butterworth, Chebyshev, elliptical and Bessel		
	1	Frequency transformations: Converting low pass to high pass, low pass to band pass, low pass to band reject filters.	15	
Π	2	Active filter synthesis: Using Op-amp, synthesis of active filter, Active elements such as GIC, FDNR, Gyrator, RC-Op-Amp Biquad circuits for synthesis based on positive and negative feedback topologies		25
	1	Biquad circuits for synthesis based on positive and negative feedback topologies.		
III	2	Active networks based on passive ladder structure, effects of real op-amp on active filters.	15	25
	3	Introduction to switched capacitor filters. Introduction of microwave filters		
IV	1	Digital filters: Classification of digital filters, Design of IIR filters, Design of FIR filters	15	25
		TOTAL	60	100

- 1. G. Darayanani, "Principle of Active Networks Synthesis and Design", John Wiley and Sons, 2011.
- 2. Hulesman, "Active and Passive Analog Filter Design", McGraw Hill, 1993.
- 3. Chen, "Passive and Active Filter" John Wiley, 1986.
- Proakis, "Digital Signal Processing, Principles, Algorithms and Applications", 4th edition, PHI 2013.

ANTENNA THEORY								
Branch : ENC/EE	Sem: V	Lectures: 4 Hr	Credit: 4					
Objective: On the completion	of this course,	students will be able to)					
Understand basic prince	• Understand basic principles of electromagnetic radiators							
• Analyze and design different types of antenna's								
Anderstand the concep	Anderstand the concept of aperture							

• Study, analyze and design microstrip antennas

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
I	1	Introduction: Recent Trends in Antennas, Basic Antenna concepts and antenna terminology, Radiation Fundamentals		
	2	Wire Antenna: Detailed mathematical analysis of Electric dipole & linear antennas, Half-wave dipole, Radiation from small current loop, Radiation from an arbitrary current source. Reflectors, image theory.	15	25
II	1	Antenna Array: Antenna Arrays, Superposition of radiating elements, broadside/end fire array, Linear arrays with n isotropic elements, Array factor, Concept of pattern multiplication, Electronic steering (phased array). Cross-coupling effects, Binomial and Dolf- chebyshev arrays Aperture Antennas, reflectors, Badiation from horns and slots	15	25
	2 1	Application Antenna · Helical Lens antenna Vagi-uda array		
III	2	Broadband and Frequency Independence: Broadband and Frequency Independent Antenna, Log Periodic Antenna	15	25
IV	1	Microstrip Antenna: Basic Characteristic, Feeding Methods, Mathematical Analysis: Transmission Line Model and Cavity Model, Design of rectangular and Circular Patch design ,Resonance Frequency, Radiating Fields, Resonant input Resistance/Impedance, Directivity, Bandwidth, Circular polarisation, Microstrip Antenna	15	25
		TOTAL	60	100

- 1. K. D. Prasad, "Antenna and Wave Propagation", 3rd Edition, Satya Prakashan, 2013.
- 2. J. D. Kraus, "Antennas", Tata MacGraw Hill, 2006.
- 3. R.C. Collin, "Antennas & Radio wave Propagation" McGraw-Hill, 1985.
- 4. C. A Balanis, "Antenna Theory Analysis and Design", 3rd Edition, John Wiley & Sons, 2013.

	CONTROL SYSTEM			
Branch : ENC/EE	Sem: V	Lectures: 4 Hr	Credit: 4	

Objective: On the completion of this course, students will be able to

- Control systems are integral part of human being's daily life. The need for control system, classification of control systems and servomechanism can be understood easily
- Time and frequency response of control systems can be understood.
- Stability is the basic requirement of the control system. Routh's Method is the easiest method to test the stability of the control system.
- Root locus is a very powerful time-domain method of analysis and design of control systems.
- Even the analysis and design of control systems in frequency domain is studied. Correlation between them is obtained by using polar and Bode plots.
- Nyquist plots are very useful for the determination of absolute as well as relative stabilities and also for the design of control systems.

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
Ι	1	Basic concepts: Notion of feed-back; open and closed-loops systems.	15	25
	2	Transfer functions; Block diagrams reduction		
п	1	Time domain analysis; first and second order systems; characteristic equations and roots and specifications.	15	25
	2	Frequency domain analysis, interrelation with time domain, specifications	13	25
ш	1	Stability Concept, Routh Hurwitz criteria, Frequency domain techniques; root locus methods, Nyquist stability criterion, polar plots, nyquist plots	15	25
	2	Frequency responses; Bode plots; Gain Margin & phase margin		
IV	1	Compensator design; proportional, planned PID controllers, Phase compensators.	15	25
	2	State Space Concepts: Controllability, Observability, minimal representations.		
		TOTAL	50	100

- 1. B. L. Kuo, "Automatic Control Systems", 2nd edition, PHI, New Delhi, 2012
- I. J. Nagrath & M. Gopal "Control System Engineering", 5th edition, Wiley Eastern, New Delhi, 2012.

COMMUNICATION SKILLS – II					
Branch : ENC/EE/IT/CST	Sem: V	Lectures: 4 Hr	Credit: 4		
Objective : On the completion of t	his course, st	udents will be able to			
• Select appropriate mediums for effective communication					
• Appreciate the importance of non-verbal aspects of communication					

- Strengthen understanding of communication and soft skills
- Use communication and soft skills to achieve professional goals

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
I	1	Communication in a Business Organization Internal (upward, downward, horizontal, grapevine), External Communication, Strategies for conducting successful business meetings, documentation of meetings, Introduction to modern communication techniques, legal and ethical issues in communication (intellectual property rights, patents). Advanced technical Writing: Report writing and presentation: Definition and importance of reports qualities of a good report language and style in reports		25
	2	types of reports, formats, methods of compiling data. A computer aided presentation of a project report based on technical, survey-based, reference based or campus related topic. Topics to be assigned to a group of 8-10 students. The written report should not exceed 20 printed pages.		
II	3	Technical paper writing IEEE format of writing a technical paper. Choosing the right topic, collecting information, Importance of visual aids, making a good presentation.	15	25
	4	Writing Proposals: Formats of proposal writing, style and language.		
Ш	5	Interpersonal Skills: Introduction to emotional intelligence, motivation negotiation and conflict-resolution. Assertiveness, leadership, team building, decision making, time management.	15	25
	6	Exercises in Vocabulary and comprehension to improve reading and writing skills		
IV	7	Interview Techniques: Preparing for job interviews, verbal and non-verbal communication during interviews. Role play project to be taken up by the entire class.	15	25
	8	Group Discussion: Dynamics of group behaviour, techniques for effective participation.		
		TOTAL	60	100

- 1. Fred Luthans, 'Organizational Behavior", 12th edition, Mcgraw Hill International, 2011.
- 2. Lesiker and Petit, 'Report writing for Business', Mcgraw Hill International edition.
- 3. Huckin and Olsen, ' Technical Writing and Professional Communication", Mcgraw hill International Edition.
- 4. Wallace and Masters, 'Personal Development for life and work' Thomson Learning
- 5. Lewicki, saunders, Minton 'Essentials of Negotiation' Mc Graw hill
- 6. Hartman Lemay 'Presentation Success" Thomson Learning.

PRINCIPLES OF COMMUNICATION					
Branch : ENC/EE	Sem: V	Lectures: 4 Hr	Credit: 4		
Objective On the completion of this course, students will have the knowledge of					

f this course, students will have the knowledge

- The fundamentals of basic communication system •
- Different modulation and demodulation schemes used in analog communication •
- Working principles of transmitter and receiver of modulation schemes used in analog ٠ communication
- The basics of sampling and pulse modulation techniques •

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
I	1	 Basic communication system: Block diagram, electromagnetic spectrum, signal bandwidth and power, types of communication channels. Noise: Types of noise, signal to noise ratio, noise figure and noise temperature. Wave propagation in Atmosphere, Ionosphere; Surface wave propagation, Multi-hop Propagation, Submarine communication. 	15	25
	2	Amplitude modulation: Basic concept, signal representation, need for modulation, Frequency spectrum, waveforms, modulation index, bandwidth, voltage distribution and power calculation.		
Π	1	 Double sideband full carrier (DSBFC): Principles, modulating circuits, low level and high level transmitters. DSBSC:-Multiplier modulator, nonlinear modulator and switching modulator. Single sideband (SSB): Principle, Generation of SSB by using Filter method, phase shift method and third method, Independent sideband (ISB) and vestigial sideband (VSB). Amplitude demodulation: Diode detector, practical diode detector and square law detector, Application of AM and use of 	15	25
III	1	 VSB in broadcast television. Frequency modulation (FM): Basic concept, mathematical analysis, frequency spectrum of FM wave, modulation index, frequency deviation and percent modulated waves, bandwidth requirement of FM, narrowband and wideband FM. Generation of FM: Varactor diode modulator, FET reactance modulator, stabilized reactance modulator, stabilized reactance modulator, stabilized reactance modulator. FM transmitter, indirect FM transmitter, noise triangle in FM, pre-emphasis and de-emphasis. Phase modulation (PM): Principle and working of transistor direct PM modulator and comparison between FM and PM. FM Demodulation: Balanced slope detector Foster-Seeley 	15	25

		TOTAL	60	100
IV	2	 AM receiver circuits and analysis, simple AGC, delayed AGC, forward AGC and communication receiver. FM receiver circuits, comparison with AM receiver. Sampling techniques: Theorem for low pass and band pass signals, Nyquist criteria, Aliasing error and aperture effect, Pulse modulation and demodulation: PAM, PWM and PPM generation and detection. PCM, Delta modulation, Adaptive delta modulation, principle, generation and detection. TDM and FDM basic concept with block diagram. Application of pulse communication, Recent trends in communication. 	15	25
		Radio receivers:- TRF, Super-heterodyne receiver, receiver parameters and selection of IF.		
		discriminator ,ratio detector, phase lock loop(PLL) FM demodulator, amplitude limiting and thresholding, comparison between AM , FM and PM, Applications of FM and PM.		
				1

Text Books/ References Books

- 1. George Kennedy, "Electronic Communication Systems", 5th edition, Tata Mcgraw Hill, 2011.
- 2. Roody Collin, Electronic Communication, 4thEdition, PHI, 2008.
- 3. Singh and Sapre, "Communication Systems", 2nd edition, McGraw Hill, 2007.
- 4. Blake, "Electronic Communication Systems", 2nd Edition, Thomson, 2002.
- 5. Wayne Tomasi, "Electronic Communication System", 6th edition, Pearson Education, 2004.
- 6. Taub, Schilling and Saha, "Principles of Communication systems", 4th edition, Tata McGraw Hill, 2013.

LABS / TUTORIALS FOR SEMESTER V

MICROPROCESSOR-I LAB				
Branch : ENC/EE	Sem: V	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	Executing program using various instruction using simulators a. Add /	
	Subtract, Multiply and Divide using internal memory b. Executing	
	External memory related instruction e.g. 8255(as a memory map ext RAM	
	or external EPROM)	
	Designing mathematical calculator a. Add b. Subtract c. Multiply d.	
	Divide e. Square Using simulator kit	
	Timing diagram of typical target board using DSO and logic analyzer of	
	typical instruction.	
	Creating program using assembler and downloading using EEPROM/Flash	
	programmer small program to flash LED. Interfacing keypad and LCD	
	display and program to detect the key and display on LCD	
	Interfacing 8 bit and 12 bit ADC. Find out average value over 10 readings	
	Interfacing D/A converter a. Generating various waveforms	
	Debugger using simulator and emulator	
	Serial communication to PC	
	Controlling motor/stepper motor	

PRINCIPLES OF COMMUNICATION LAB					
Branch : ENC/EE	Sem: V	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	
1	To study the amplitude modulation (AM) and to find the modulation index	
	for over and under modulation.	
	To study the generation of SSB (single sideband) with different filters.	
	To study the amplitude demodulation by using linear diode detector	
	The study the frequency modulation (TM) and to shapmy the sidehands of	
	To study the frequency modulation (FM) and to observe the sidebands of	
	1t.	
	To study the concept of Preemphasis and deemphasis.	
	To study the frequency demodulation by using fosterseely and ratio	
	detector method.	
	To study the Pulse modulation types i.e. PAM, PWM, PPM.	
	To study the analog signal sampling and reconstruction of it.	
	To Study the Concept of multiplexing by using TDM.	

FILTERS THEORY LAB					
Branch : ENC/EE	Sem: V	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	
1	All the practical would be implemented in OCTAVE	
	To implement sin cosine plot	
	To implement butterworth filter	
	Low pass	
	High pass	
	Bandpass	
	Bandstop	
	To implement chebyshev filter	
	Low pass,	
	High pass	
	Bandpass	
	Bandstop	
	To implement elliptical filter	
	To implement FIR using rectangular and hamming window	
	To implement IIR using rectangular and hamming window	

CONTROL SYSTEM LAB					
Branch : ENC/EE	Sem: V	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	
1	To perform AC servo Stabilizer	
	To perform synchro transmitter and receiver	
	To perform lead compensating network	
	To perform lag compensating network	
	To perform lead-lag compensating network	
	To plot bode plot	
	To plot nyquist plot	
	To plot polar plot	
	To perform PID controller	

MICROPROCESSOR- II					
Branch : ENC/EE	Sem: VI	Lectures: 4 Hr	Credit: 4		

Objective : The learners will be able to understand

- Architecture of microcontroller like Intel 8051 and ARM
- Analysis and design skill using microcontrollers and various peripherals.
- To design and develop a simple microcontroller based application.

Module No	Sr. No	Topic and Details	No. of Lectures assigned	Weighta ge in %
Ι	1	Introduction to Microcontrollers: Microprocessors and Microcontrollers, CISC and RISC Processors, Harvard and Von Neumann Architectures, Architecture of a Microcontroller, Family members, Microcontroller resources, Resources in Advanced and Next Generation Microcontrollers.	15	25
	2	ARM Architecture : Features, purpose, and advantages, Processor operating states, memory formats, data types, operating modes, registers, program status registers, exceptions, interrupt latencies, and pipelined architecture advantage		
Π	1	8051 Architecture: MCS-51 architecture, Pin description, Internal and external memories, timing diagrams for memory interfacing, Counters and Timers, Serial communication, Stack and Stack Pointer, Port Structure and Interrupts.	15	25
	2	Addressing modes and Instructions: 8051 Addressing modes, MCS-51 Instruction set, Microcontroller Application Development tools-Simulator, Emulator, In-circuit Emulator (ICE), Logic Analyzer, ISP, Cross assembler, Embedded C.	15	23
III	1	Serial and Parallel Port Interfacing: RS232, RS485, I2C bus standard, Interfacing ADC, DAC, memory, RTC with 8051/89C51 using I2C bus. Interfacing 8051/89C51 to LED with and without interrupt, ADC, DAC, LCD and keypad (debounce) Stepper motor, SPI bus.	15	25
IV	1	The Intel 80386 Microprocessor: Brief overview of 8086. Features, pin diagram and pin description of 80386, internal architecture of 80386, register organization inside 80386, addressing modes of 80386, modes of operation such as real mode, protected mode, and virtual mode.		
	2	Memory management in 80386, address translation mechanism, segmentation and segment descriptor tables, segment selectors and segment descriptors Hard ware organization of 80386 memory address space, 80386 signal interface, bus states, pipelined and non-pipelined bus cycles, memory and I/O interfaces, Protection model for 80386, privilege rules, data access and control transfer, multitasking, task state segment and switches, I/O level protection, paging, Virtual 86 mode of operation	15	25
		Total	60	100

- 1. Tribel, "The 80386 DX microprocessor hardware, softwae and interfacing", PHI.
- 2. Crawford and Gelsinger, "Programming the 80386", Sybex Publisher.
- 3. 80386 Hardware reference manual Intel Corporation.
- 4. Tom Shanley, "Pentium Processor System Architecture", 2nd edition, Addison Wesley, 1995.
- 5. Tom Shanley, "ISA system architeture", 3rd Edition, Addision Wesley, 1995.
- 6. Tom Shanley, "PCI System Architeture", Addison Wesley, 1995.
- 7. F. Schmidt, "SCSI Bus IDE Interface", by Addison Wesley.
- 8. Bary Brey, "The Intel Microprocessor", 8th edition, PHI, 2009.
- 9. David Seal, "ARM Architecture", Reference Manual (2nd Edition).

AUTOMOTIVE ELECTRONICSBranch :EESem: VILectures: 4 HrCredit: 4Objective : On the completion of this course, students will be able to

• Understand the fundamentals of automotive electronics.

- Discuss the latest trends used in automobiles
- Learn to use electronic systems in automobile for increasing the safety and comfort of human beings.

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
Ι	1	Fundamentals of automotive electronics: Principle of Sensors, actuators and electronics control units, Types of sensors & actuators used in automobile batteries, vehicle circuit systems. Automobile physical configuration		
	2	Generation of Electrical Energy: Four stroke cycle of SI engine, Spark plug configuration, Combustion and Ignitions, Ignition circuit, working of distributor, Spark generation, starting motor system, Engine management.	15	25
Π	1	Vehicle lighting system: Lighting fundamentals, Types of bulbs, External lights used in automobile, Headlight reflectors, Poly-ellipsoidal headlight system (PES system), Headlight lenses.	15	25
	2	Instrumentation & signaling equipments: Windscreen washers & wipers, flasher units, brake lights, electric horn, computer based modern instrumentation system, fuel quantity measurement, oil pressure measurement, speed measurement, display devices		
III	1	eating ventilation and engine cooling: equirement of ventilation, Heating system used in itomobile, Electronic heating control, Principle of frigeration, Air conditioning system used in automobile, utomatic temperature control.	15	
	2	Road wheel control system: Requirements of ABS(Anti-lock brakes), General system description, ABS components, Anti-lock brake system control, suspension system, Traction control, Control of gear shift and torque converter, Electric power steering,	15	25

IV	1	Vehicle security & In car entertainment : Central locking and electric windows, Door locking circuit, Electric window operation, Cruise control, Adaptive cruise control, In-car multimedia, speakers, Airbags and belt, Tensioners	15	25
	2	Advanced systems used in automobile: Automotive navigation system, Embedded Systems in Automobiles, Auto PC system, Digital audio broadcast (DAB),,Radio data system (RDS),		
		TOTAL	60	100

- 1. Tom Denton, "Automobile electrical and electronic system" 3rd edition, elsevier.2.
- S. Krueger, W Gesner, "Advance Microsystems Automotive Applications" 1st Edition, Springer, 2002.
- 3. V.A. W Helier, "Fundamentals of Automotive Electronics" 2nd Edition, Neson, Thomes, 1996.
- 4. William Ribbens, "Understanding Automotive Electronics", 5th edition, Newnes.
| DIGITAL SIGNAL PROCESSING AND APPLICATIONS | | | | | | | |
|--|--|--|--|--|--|--|--|
| Branch : ENC/EESem: VILectures: 4 HrCredit: 4 | | | | | | | |
| Objective : On the completion of this course, students will be able to | | | | | | | |
| • Understand the time and frequency domain concepts. | | | | | | | |

- Do time frequency domain analysis of a signal.
- Different methods of time domain and frequency domain implementation.
- Provide a thorough understanding and working knowledge of properties of discrete Fourier transform.
- Understand the implementation of the DFT in terms of the FFT, as well as its applications like convolution sum, linear filtering etc.
- Learn the different forms of realization for IIR and FIR filters.
- Basic concepts of Digital Signal Processor
- Become aware of some applications of digital signal processing

Mod ule No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1.	Introduction to DSP:- Introduction to DSP, comparison of ASP and DSP		
I	2.	Frequency analysis of DT signals: - Power density spectrum, DTFT, DTFT of Basic signals Energy density spectrum, Frequency response of DTLTI system using DTFT.	15	25
	3.	Discrete Fourier transform:- Introduction, properties of DFT Linear filtering methods based on DFT, frequency analysis of signals using DFT, Relationship between DTFT & DFT, DFT and Z transform.	15	25
Π	2.	Computation of DFT :- Introduction, Radix 2 FFT algorithms, (DIT & DIF), IDFT algorithms, split Radix algorithms, quantization effects in computation of DFT, linear filtering using FFT.	15	23
ш	1.	Implementation of Discrete time system: - Structure for the realization of DT systems, Structure for FIR system, Direct form structure, cascade form structure, lattice structure, structure for IIR Direct form, signal flow graph, transpose structure, cascade form, parallel form and lattice form.	15	25
	1.	DSP processors:- Comparison of general purpose microprocessor with DSP, Internal architecture of ADSP 21XX Family, Features of ADSP 21XX, TMS 320C5X		
IV	2.	Applications of DSP: - Digital audio mixing, speech synthesis and recognition, the compact disc digital audio system. Subband coding, channel Vocoder, Homomorphic Vocoder, Digital Processing of Audio signals, Radar Signal Processing Introduction to Adaptive signal processing.	15	25
		TOTAL	60	100

Text /Reference Books

- 1. John G. Proakis, Dimitris Manolakis, "Digital Signal processing", 4th Edition, PHI, 2007.
- 2. S Salivahanan, "Digital Signal Processing", 2nd edition, TMH, 2011.
- 3. Oppenham & Scafer, "Discrete Time Signal Processing", 3rd edition, PHI, 2013.
- 4. J. R. Johnson, "Introduction to Digital Signal Processing", PHI, 2011.
- 5. P.Ramesh Babu, "Digital Signal Processing", 5th edition, SCITECH, 2014.
- 6. Sanjeev Mitra, "Digital Signal processing", 2nd edition, McGraw-Hill, 2001.

INDUSTRIAL ELECTRONICS Branch : EE Sem: VI Lectures: 4 Hr Credit: 4

Objective : On the completion of this course, student will have the knowledge of

• The basic concepts of Industrial Electronics

• Important power devices in detail along with basic application of SCR to get skill of developing and design related to power electronics circuits

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
I	1	Power semiconductor devices History of power electronics development, Overview of Power electronics system, Power semiconductor devices ,their symbols and static characteristics and ratings, SCR protections, Turn-on and turn-off circuits, Series and parallel connections of SCR, Applications of thyristor, Comparison between thyristor and transistor	15	25
	2	Single phase controlled rectifier Single phase half wave controlled rectifier with resistive and inductive loads, effect of freewheeling diode, Single phase fully controlled and half controlled bridge converters, Performance Parameters		
II	3	Three phase controlled rectifierhalf wave and full wave fully controlled with resistive loadTriggering circuit for controlled rectifierInverse cosine method, Transistorized firing circuit, Usinglogic gates. Three phase firing using inverse cosine	15	25
	5	D.C. Choppers Introduction, Basic classification, Operation Control strategies, Configurations, Thyristor chopper circuits, Jones and morgan chopper	15	25
ш	6	Inverters Introduction, Classification, Single phase half-bridge and full bridge inverters, Performance parameters, Voltage control of Single phase inverters, PWM inverters, Three phase inverters	15	25
	7	Cycloconverters : Introduction, Operation, Single phase - Single phase, Three phase- Single phase, Three phase phase		
IV	8	DC and AC motor control Single phase series dc motor drives: semi converter and full converter, Three phase semi converter and full converter, Induction motor drives, Performance measurements, Various speed-torque characteristics control methods	15	25
		TOTAL	60	100

Text / Reference Books:

- 1. M H rashid," Power electronics : Circuit Devices and applications", THI India 3rd edition 2004.
- 2. MD singh and KB Khanchandani," Power electronics", TMH 2005.
- 3. P C Sen," Power electronics", TMH 2005.

DIGITAL COMMUNICATION Branch : ENC/EE Sem: VI Lectures: 4 Hr Credit: 4

Objective : On the completion of this course, students will be able to

- Understand the concept of information theory and source coding techniques
- Learn different Digital Modulation techniques and compare their performances
- representation of signals using these techniques, signal space diagram, spectra of modulated signals
- Detection of digital modulated signals
- Learn and discuss the performances of different channel coding techniques used for reliable transmission digitally modulated signals over channel
- Understand the concept of OFDM and different techniques of spread spectrum

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1	INTRODUCTION TO DIGITAL COMMUNICATION block diagram of digital communication system along with sub- system description, comparison with analog communication system, Introduction of baseband and bandpass modulation		
Ι	2	 SOURCE ENCODING Information Theory: Self information, Entropy, Average information Coding for discrete sources: Fixed/variable length coding, Prefix condition, Kraft's Inequality, Uniquely decodable code, Huffman coding, Lempel-Ziv coding. Channel Models: Binary symmetric channel, channel capacity. 	15	25
Π	1	BANDPASS MODULATION Study of transmitter, receiver, signal space representation, Euclidean distance, PSD, bandwidth efficiency, error probability of : BPSK, DPSK, DEPSK, QPSK, M-ary PSK, QASK, BFSK, M-ary FSK, MSK. Comparison and Applications of digital modulation techniques Duo-binary encoding	15	25
	2	SPECTRAL ANALYSIS Orthogonalisation, Orthonormal ,Gram-schimidth Procedure		
	1	DEMODULATION/DETECTION Integrate and dumb filter, Matched filter, Optimum filter, Correlator.		
III	2	CHANNEL ENCODING Linear block codes:Generator Matrix, Parity Check Matrix, Syndrome decoding, error detection and correction, implementation of decoder Cyclic codes: Systematic and non-systematic encoding,	15	25

		systematic encoder implementation with shift registers, error		
		detection		
		Convolution codes: Code tree, State diagram, Trellis diagram		
		Convolution decoding: Viterbi algorithm, Sequential decoding.		
	1	OFDM Introduction to OFDM, transmitter, receiver, advantages, disadvantages		
IV	2	SPREAD SPECTRUM Frequency-hopping spread spectrum (FHSS), direct-sequence spread spectrum (DSSS), time-hopping spread spectrum (THSS), chirp spread spectrum (CSS)	15	25
		TOTAL	60	100

Text / Reference Books

- 1. Taub and schilling, "Principles of communication systems", 4th Edition, Tata McGraw, 2013.
- 2. Proakis, "Digital communication", 5th Edition, Tata Mcgraw Hill, 2008.
- 3. B. Sklar, "Digital communication Fundamentals and applications", 2nd Edition, Pearson Education, 2009.
- 4. K. Sam Shanmugan, "Digital and Analog Communication systems", John Wiley and Sons, 1996.
- 5. Singh R. P. & Sapre S. P., "Communication Systems", 2nd edition, McGraw Hill, 2007
- 6. B. P. Lathi, Zhi Ding, "Morden Digiital & Analog Communication System", Oxford University Press, 4th edition, 2014.

LABS / TUTORIALS FOR SEMESTER VI

MICROPROCESSOR II LAB				
Branch : ENC/EE	Sem: VI	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	Programming of 8051 (simple programs)	
	Programming of 8051 (complex programs)	
	8051 LED interfacing	
	8051 and LCD and keypad interfacing	
	RS 232/485 communication with 8051 with and without interrupt	
	80386 practical's	

AUTOMOTIVE ELECTRONICS LAB				
Branch : EESem: VIPractical Hrs: 2Hr	Credit: 2			

Sr. No	Detail Syllabus
1	Study of automotive fundamentals
	Study of LCD display.
	Study of automatic switching.
	Speed control of DC motor.
	Speed control of stepper motor.
	Study of safety buzzer.
	Study of automatic indicators.
	Study of automatic temperature control.
	Fault diagnosis in automobile.

DSP LAB				
Branch : ENC/EE	Sem: VI	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	(All DSPA Practicals will be conducted in OCTAVE/MATLAB)	
	Waveform generation using OCTAVE	
	Frequency Response Of DT-LTI System	
	Discrete Fourier Transform and inverse discrete Fourier Transform	
	Frequency response using Fast Fourier Transform	
	Linear Convolution	
	Circulation Convolution	
	Cross Correlation And Auto Correlation	
	Cascade Realization of DT-LTI system	
	Impulse response of DT-LTI system	

POWER ELECTRONICS LAB				
Branch :EE	Sem: VI	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	To study SCR characteristics	
	To study applications of DIAC and TRIAC	
	To study different turn on methods of SCR	
	To study different turn off methods of SCR	
	To study single phase half controlled rectifier or full controlled	
	rectifier with R and RL load	
	To study various triggering circuits of SCR	
	To Study step up and step down choppers	
	To study Inverters	
	To study Cycloconverters	
	To study DC and AC Drive	
	To study Jones or Morgan Choppers	

DIGITAL COMMUNICATION LAB							
Branch	: ENC/EE		Credit: 2				
			/ /				

Sr. No	Detail Syllabus	
1	Study various digital modulation/demodulation techniques,	
	and various sources and channel coding techniques	

CONSUMER ELECTRONICS							
Branch : EE	Sem: VII	Lectures: 4 Hr	Credit: 4				
Objective : On the con	npletion of this course, stude	ents will be able to					
• <u>Illustrate product</u>	manufacturing process.						
• Understand the co	oncept of product develop	nent for Consumer Electron	iics, Compliance				
• Acquire the know	ledge of various Video/ Au	dio systems and products					
• Learn about vario	ous applications of consum	er electronics products					
		•					

- <u>Troubleshoot consumer electronics products.</u>
 <u>Understand various audio and video compression algorithms.</u>

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weight age in %
I	1	Product Development for Consumer Electronics : Product policy, product life cycle, product classification; new product development systems, generation of new product ideas, consumer based concept screening and evaluation, economic evaluation.		
	2	Compliance : Product safety and liability issues; standards related to electrical safety and standards related to fire hazards, e.g., UL and VDE. EMI/EMC requirements and design techniques for compliance, e.g. ESD, RF interference and immunity, line current harmonics and mains voltage surge.	15	25
Π	1	 Video Systems & Product: Digital TV :Introduction to Digital TV, Principle of Digital TV, Digital TV signals and parameters, Digital TV Transmitters, MAC signals, advanced MAC signal transmission, Digital TV receivers, Basic principles of Digital Video compression techniques, MPEG1, MPEG2, MPEG4, Video compression ITU-Standards(H.). <u>3D</u> <u>TV</u> HDTV: HDTV standards and systems, HDTV transmitter and receiver/encoder, direct to home TV, set top box with recording facility Gaming Applications: PS3,XBOX 	15	25
III	1	Office Applications: CCTV, CATV, Scanners – Barcode / Flat bed , Printers , Xerox, Solar Cells and Panels, Projectors, <u>mobile phones</u> , Consumer Applications : Digital cameras, Camcoders, Handycams, and Digicams, , MPEG, MP3, <u>microwave oven</u>	15	25
IV	1	Audio Systems & Products: Audio quality and standards: toll, broadcast, CD; compression of audio signal, recording of audio signal; over-sampling; CD/ DVD player, MP3 player, Blue Ray DVD Players Design Case Studies :Audio and video systems and products; domestic appliances and office automation equipment: SoC.	15	25
		TOTAL	60	100

Text Books /Reference Books

- 1. Television and video Engineering, A. M. Dhake, 2nd edition, TMH Publication, 1999.
- 2. Video Demisified, Kelth jack, Penram International Publication.
- 3. Audio Video Systems, R.G. Gupta, Technical Education.
- 4. P.A. Chatterton and M. A. Houlden, EMC: Electromagnetic Theory to Practical Design, Wiley.
- 5. J.A.S. Angus, Electronic Product Design, Chapman and Hall, 1996.
- 6. S. P. Bali, "Color TV Theory and Practice", 1994.
- 7. Bernard Grobb, Charles E, "Basic TV and Video Sytems", 1999.
- 8. Gulati, "Monochrome & Color TV", 13th edition, 1989.
- 9. C.M. Wintzer, International Commercial EMC Standards, Interference Control Technologies, 1988.
- 10. Y.J. Wind, Product Policy: Concepts, Methods, and Strategy, Addison-Wesley Pub. Co., 1982.

MECHATRONICS				
Branch : EE	Sem: VII	Lectures: 4 Hr	Credit: 4	

Objective : On the completion of this course, students will acquire the knowledge of

- <u>Strong foundation in science and focus in mechanical, electronics, control, software, and computer</u> engineering, and a solid command of the newest technologies
- <u>Design, analyze, and test "intelligent" products and processes that incorporate appropriate</u> <u>computing tools, sensors, and actuators</u>
- Key elements and basic concept of the mechatronics system
- Various sensors and actuators applicable to Mechatronics system
- Interfacing of the electromechanical devices.
- <u>Practice professional and ethical responsibility and be aware of the impact of their designs on humankind and the environment</u>

Module No.	Sr. No	Topic and Details	No. of Lectures assigned	Weight- age in %
Ι	1	INTRODUCTION TO MECHATRONICS key element of mechatronics, mechatronics systems in factory, home and business applications, basic Components of mechatronics systems, Mechatronics Design process, objectives, advantages of mechatronics <u>man machine interface, industrial</u> <u>design and ergonomics, information transfer, safety.</u>		
	2	SENSORS AND ACTUATORS Sensors: Proximity sensors(Optical, Inductive, Capacitive) Motion Sensors(Variable Reluctance), Temperature Sensor(RTD, Thermocouples); Force / Pressure Sensors(Strain gauges); Flow sensors(Electromagnetic) Actuators: Harmonic drive, Comb drive; Piezoelectric drives; Selection of actuator <u>Control devices – Electro hydraulic control devices, electro</u> <u>pneumatic proportional controls – Rotational</u> <u>drives,Pneumatic motors ,Hydraulic motor</u>	15	25
II	1	Programmable Logic Controller (PLC) in automation: Basic structure, I/O processing. Ladder logic diagram, PLC for industrial process control, Selection of PLC	15	25
11	2	DataAcquisition:DataAcquisitionsystems(DAQs),dataloggers, supervisory control and data acquisition,.		

III	1	System Interfacing: interfacing requirements; Brief overview of buffers, handshaking, polling and interrupt, digital communication, parallel communication, serial communication interface; Universal asynchronous receiver and transmitter (UART), peripheral interface device (PIA), analog interfacing, Component interconnection and impedance matching, interfacing sensors and motor drives with microcomputer system	15	25
IV	1	Mechatronics case studies : Autonomous Mobile Root, Wireless Surveillance Balloon, Fire Fighting robots, Cantilever beam vibration control using piezo sensors and actuators, Car engine management, pick and place robot, automatic camera, CNC machine	15	25
		TOTAL	60	100

Text /Reference Books

- 1. Mechatronics System Design, Shetty and Kolk, Cengage Learning, India Edition
- 2. Introduction to Mechatronics and Measurement Systems, Alciatore and Histand Tata McGraw-Hill
- 3. Mechatronics, Necsulescu, Pearson education.
- 4. Mechatronics Electromechanics and Control Mechanics, Mill Springer-Verlag.
- 5. <u>Bolton, Mechatronics Electronic Control Systems in Mechanical and Electrical</u> <u>Engineering, 2nd Edition, Addison Wesly Longman Ltd., 1999.</u>

EMBEDDED AND IOT SYSTEM					
Branch : ENC/EE	Sem: VII	Lectures: 4 Hr	Credit: 4		

Objective :

- Understand the fundamentals of embedded systems
- To introduce on processor scheduling algorithms, Basics of Real time operating system
- To learn the Essentials of Open Source RTOS and their usage.
- Understand IoT Market perspective with Data and Knowledge Management and use of Devices in IoT Technology
- The learner will be able to use of Devices, Gateways and Data Management in IoT.

Module No	Sr. No	Topic and Details	No. of Lectures assigned	Marks assigned
I	1	Introduction : Introduction to embedded system, embedded system architecture, classifications of embedded systems, challenges and design issues in embedded systems, Design trade offs due to process compatibility, thermal considerations	15	25
	2	Technologies with ES - RS232, RS485,Zigbee		
	1	Rtos Based Embedded System Design - Introduction to basic concepts of RTOS- Need, Task, process & threads Hard Real time and Soft Real-time, Differences between General Purpose OS & RTOS, interrupt routines in RTOS, Multiprocessing and Multitasking,		
П	2	Open Source Rtos -: Basic architecture of an RTOS, Scheduling Systems, Introduction to Inter-process communication, Performance Matrix in scheduling models Comparison of Real time Operating systems: VxWorks, чC/OS-II, RT Linux	15	25
III	1	Overview of IOT : Architecture, Main design principles ,needed capabilities, IoT architecture outline, standards considerations.		
	2	IoT Reference Architecture- Introduction, Functional View, Information View, Deployment and Operational View, Other Relevant architectural views. Challenges in IoT - Design challenges, Development challenges	15	25
IV	1	M2M and IoT Technology Fundamentals- Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge Management	15	25
	2	Developing in IoTs - Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Implementing basic IoT concepts with python		
		TOTAL	60	100

Text/Reference Books

- 1. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.
- 2. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014.
- 3. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1 st Edition, Apress Publications, 2013
- 4. Cuno Pfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493-9357-1
- 5. J. W. Valvano, "Embedded Micromputer System: Real Time Interfacing" Brooks Cole, 2000.
- 6. Dr. K.V.K. Prasad, "Embedded / Real-Time Systems: Concepts, Design and Programming Black Book", New ed (MISL-DT) Paperback 12 Nov 2003
- 7. Han Way Huang, PIC Microcontroller, Cengage learning Design with PIC Microcontrollers By John B. Peatman, Pearson Education Asia LPE
- 8. Venkateswaran Sreekrishnan," Essential Linux Device Drivers", Ist Kindle edition, Prentice Hall, 2008
- 9. Seppo J. Ovaska Phillip A. Laplante,"Real-Time Systems Design and Analysis:Tools for the Practitioner", 4ed Paperback 2013
- 10. Ward, Paul T & Mellor, Stephen," Structured Development for Real Time Systems v1, v2,V3: Implementation Modeling Techniques " Prentice hall, 2015
- 11. David E. Simon, ".Embedded Software Primer": Addison-Wesley Professional, 2000

VLSI DESIGN (need to be arranged in 4 modules)						
Branch : EESem: VIILectures: 4 HrCredit: 4						
Objective : On the completion of this course, students will be able to						

- Understand principles of VLSI circuit design, layout techniques ,choice of technology and technology scaling
- Design MOS based circuits with different design styles
- Understand system level design

Modulo	Sr			Weight
No	No	Topic and Details	Lectures	age in
110.	110			%
		Review of MOS transistor models		
		Fabrication process flow for NMOS and CMOS, Types of		
т	1	scaling, short channel effects, Level 1 and Level 2 MOSFET	15	25
1		Models.	15	25
		Lambda based design rules, MOSFET capacitances		
	2	CMOS logic families		
		Integrated Circuit layouts		
		MOSFET Inverters, Circuit Analysis: Static and dynamic		
		analysis (Noise, propagation delay and power dissipation)		
п	1	of resistive load and CMOS inverter. Comparison of all	15	25
	1	types of MOS inverters. Design of CMOS inverters and its	13	23
		layout.		
		Analysis and design of 2 I/P NAND and NOR using		
		equivalent CMOS inverter.		
		MOS circuit Design Styles:		
		Static CMOS, Pass Transistor Logic, Transmission Gate,		
III	1	Pseudo NMOS, Domino, NORA, Zipper, C2MOS.	15	25
		<u>Circuit Realization of SR Latch, JK FF, D FF, 1 Bit Shift</u>		
		<u>Register, MUX, Decoder using above design styles and their</u>		
		layout		
		VLSI system design:- data and control path design,		
		Adder: Bit adder circuits, Ripple carry adder, CLA adder		
	1	Multipliers and shifter:		
IV	1	Partial product generation, partial product accumulation,	15	25
		<u>linal addition, Barrel Snitter</u>		
		Semiconductor Memories: SKAM, DKAM.		
	2	Design examples		
X 7	1	Introduction to HDL,		
V	2	Low Power CMOS Circuits:		
		<u>Various components of power dissipation in CMOS,</u>		

Limits on low power design, low power design through		
voltage scaling.		
Interconnect & Clock Distribution		
Interconnect delays, Cross Talks, Clock Distribution		
TOTAL	60	100

Text / Reference Books

- 1. N. Weste and K. Eshranhain, "Principles of CMOS VLSI Design" Addision Wesley, 2014.
- 2. L. Glaser and D. Dobberpuhl, "Design and Analysis of VLSI Circuit" Addision Wesley.
- 3. <u>Sung Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition, 2012.</u>
- 4. John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley, Student Edition, 2013.
- 5. R. Jacob Baker, "CMOS Circuit Design, Layout and Simulation ", Wiley, 2nd Edition, 2004.

RENEWABLE ENERGY SOURCES (Elective I)

Branch : ENC/ EE

Sem: VII Lectures: 4 Hr

Credit: 4

Objective : On the completion of this course, students will be able to

• Understand the various renewable energy resources and sustainability.

Modul e No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
Ι	1	Solar Energy: Solar radiation, types of solar thermal collectors - flat and concentrating collectors, Solar thermal applications - water heaters, dryers, stills, refrigeration, air-conditioning, solar pond, central receiver power generation.	15	25
	2 C	Wind Energy: Basic principle of wind energy conversion system, wind data and energy estimation, site selection, components of wind energy conversion systems, design consideration of horizontal axis wind mill.	10	
П	1	 Biomass Energy: Biomass, sources of biomass, thermo-chemical and bio-chemical conversion of biomass -pyrolysis, gasification, combustion and fermentation. Gasifiers – up draft, downdraft and fluidized bed gasifiers. Digesters-fixed and floating digester biogas plants, economics of biomass power generation. 	15	25
	2	Ocean, Hydro and Geothermal Energy: Wave and tidal energy, ocean thermal energy conversion - principle, types, power plants- small, mini and micro hydro power plants. Exploration of geothermal energy, geothermal power plants. Introduction to direct energy conversion systems – fuel cells and magneto hydrodynamic power generations.		
III	1	Renewable Energy Policy: Renewable energy policies, including feed-in tariffs, portfolio standards, policy targets, tax incentives, and biofuels mandates. International policies for climate change and energy security. Economic analysis and comparisons, Life cycle analysis, financial analysis, cost of conserved energy, and externalities. Cost assessment of supply technologies versus energy-efficiency.	15	25

IV	1	Sustainable Energy : Sustainable energy futures, global scenarios, promising technologies, development pathways, clean coal and carbon technologies, electric vehicles, energy fluctuation and energy storage, distributed generation and smart grids.	15	25
		TOTAL	60	100

Text /Reference Books:

- 1. Rai.G.D, "Non-Conventional Energy Sources", Khanna Publishers, 4th edition, New Delhi, 2009.
- 2. Roland Wengenmayr, Thomas Buhrke," Renewable energy: Sustainable energy concepts for the future", Wiley-VCH, 1st edition, 2008.
- 3. Godfrey Boyle, "Renewable energy", Oxford University Press, 2nd edition, 2010.
- 4. Hans-Josef Fell, "Global cooling strategies for climate protection", CRC Press, 2012.
- 5. Ottmar Edenhofen, "Renewable energy sources and climate change mitigation", Cambridge University Press, 2011.
- 6. B.K. Hodge, "Alternative energy systems and applications", John Wiley & Sons, 2009.
- 7. Mark Diesendrof, "Greenhouse solutions with sustainable energy", University of New South Wales Press, 2007.

Coding Techniques and Cryptography (Elective I)				
Branch : ENC/ EE	Sem: VII	Lectures: 4 Hr	Credit: 4	

Objective : On the completion of this course, students will be able to

- Understand error-control coding.
- Understand encoding and decoding of digital data streams.
- Be familiar with the methods for the generation of these codes and their decoding techniques.
- Understand the properties of codes and their respective fitness for specific applications.

Module	Sr.	Topic and Details	No. of	Weighta
No.	No		Lectures	ge in %
			assigned	
I	1	Block Codes: The Digital Communication Channel, Introduction, Single parity check codes, Product codes, Repetition codes, Hamming Codes, minimum distance of block codes. Linear Codes: Generator matrices, standard array, parity check matrices, error syndrome, error detection and correction, shortened and extended linear codes.	15	25
	2	Cyclic codes: Definition, Polynomials, Generator Polynomial, Encoding and decoding of cyclic codes. Factors of Xⁿ+1. , Dual Cyclic codes.Generator and parity check matrices of cyclic codes.		
Π	1	Introduction to finite fields <u>Properties of finite field ,Prime</u> Field and Extension Field. Arithmetic of finite field. <u>The field GF(2³),GF(2⁴), GF(2⁵). Primitive field element,</u> <u>Irreducible and minimal polynomial</u>		
	2	Bose-Chaudhuri-Hocquenghem codes: Definition and construction of Binary BCH codes, error syndrome in finite fields, Decoding SEC and DEC binary BCH codes, the error location polynomial. Reed Solomon Codes.	15	25
	3	Convolution codes; <u>Encoding convolution codes</u> , <u>Generator</u> <u>matrices and generator polynomial for convolutional codes</u> , <u>Graphical representation of convolutional codes</u> .		
III	1	Introduction to Cryptography: <u>Security Attacks, Security</u> <u>Services, Security Mechanish. Classical encryption</u> <u>techniques ,Substitution and transposition techniques. Types</u> <u>of Cryptography.</u>		
	2	Block Cipher Principles, Block Ciphers modes of operation. symmetric key Cryptography, DES and AES Algorithm. Asymmetric Key cryptography (Public Key Cryptosystem) RSA and ECC algorithm. Diffie Hellman Key Exchange Algorithm.	15	25
IV	1	Authentication algorithm	15	25

	Cryptographic Hash Function and MAC requirement and Application. Digital signature standard.		
2	<u>Network and Internet security :Transport layer security,</u> <u>wireless network security, Electronic mail security, IP</u> <u>security</u>		
	Total	60	100

Text /Reference Books

- 1. S Lin and D.J Costello ,Error Control Coding: Fundamentals and Applications , Prentice Hall.
- 2. Behrouz A. Forozan ,Debdeep Mukhopadhyay ,Cryptography and Network Security,McGraw Hill.
- 3. <u>William Stallings, Cryptography and network Security Principle and practice, Fifth Edition,</u> <u>Prentice Hall.</u>

R. F CIRCUIT DESIGN (Elective I)				
Branch : ENC/ EE	Sem: VII	Lectures: 4 Hr	Credit: 4	
Objective : On the completion of this course, student will be able to				

Objective : On the completion of this course, student will be able to

- To provide knowledge in the field of RF circuits and systems.
- To study various methodologies for the design of RF filters, various RF active and passive circuits, etc.
- To learn the design schemes currently being used for RF circuits and systems.

Modul e No.	Sr. No	Topic and Details	No. of Lectures assigned	Weightage in %
	1	Introduction : Importance of radio frequency design ,RF dimensions, units, RF behavior of passive components		
I	2	Transmission Line Analysis : Theory ,equivalent circuit, theoretical foundation, parameters, General transmission line equation, Microstrip transmission lines, terminated lossless transmission line, special termination condition.	15	25
	3	Smith chart for design of RF circuits: reflection coefficient to load impedance, impedance transformation, admittance transformation, parallel series connections.		
	1	Single and Multi-port Networks: Definition, interconnecting networks, network properties and applications scattering parameters	15	
П	2	Active RF components such as RF diodes, BJT and FET, high electron mobility transistors		25
	3	RF Filter Design: basic resonator and filter configuration ,3special filter realization, filter implementation, coupled filter.		
III	1	Matching and biasing the network: impedance matching using discrete components, microstrip line matching networks, amplifier classes of operation and biasing networks	15	25
	2	RF transistor amplifier design: characteristic of amplifiers, power relations, stability consideration, constant gains, noise figure circles, constant VSWR circuits, broadband, high power and multistage amplifier	15	25
IV	1	Oscillator and Mixer Design: basic model, feedback mechanism high frequency oscillator configuration, basic <u>Mixer characteristics</u>	15	25
	2	Design of Printed Circuit Boards		

Intr	oduction to technology of printed circuit boards (PCB),		
Gen	eral layout and rules and parameters, PCB design rules		
for	<u>Digital, High Frequency, Analog, Power Electronics and</u>		
Mic	rowave circuits, Computer Aided design of PCBs		
ΤΟ	ΓAL	60	100

Text /Reference Books

- 2. Reinhold Ludwing , Pavel Bretchko , "RF Circuit Design Theory and Applications", Pearson Publication, 2011.
- 3. <u>Walter C.Bosshart, Printed Circuit Boards Design and Technology, TMH, 1983.</u>
- 4. <u>David Pozar " Microwave Engg." 4th Ed. Wiley Eastern 2014.</u>
- 5. <u>Matthew M. Radmanesh, "RF & Microwave Design Essentials: Engineering Design</u> and Analysis from DC to Microwave", AuthorHouse, 2007.

	ADVANCED ELECTRONICS	AND INSTRUMENTATIO	ON (Elective I)
Branch : EF	Sem: VII	Lectures: 4 Hr	Credit: 4

Objective : On the completion of this course, student will be able to

- Understand the measurement of Flow, Level, Density, Viscosity, Humidity, Speed, Force And Torque
- Acquire the knowledge of the operation and applications of various instruments
- Analyze and test various Advance Electrical Instruments

Modulo	Sr		No. of	Weight
No	No	Topic and Details	Lectures	age in
110.	110		assigned	%
I	1	Measurement Of Flow And Level Flow: Expression for flow rate through restriction (compressible and incompressible flow), Variable head type flow meters-variable area flow meter-turbine flow meter-electromagnetic flow meter-ultrasonic flow meter-coriolis and thermal mass flow meter-open channel flow measurement-solid flow measurement. Level: Measurement of level using float and displacer-level switch-Hydrostatic type-bubbler method-Electrical methods- resistance, inductive, capacitance type-gamma radiation method -ultrasonic level gauging.	15	25
Π	1	 Measurement Of Density, Viscosity, Humidity Density: Measurement of density using pressure head type, float type and bridge type densitometer Viscosity: Viscosity terms–say bolt viscometer–rotameter type viscometer. Humidity: Humidity terms – dry & wet bulb psychrometers, hot wire electrode type hygrometer, Dew point hygrometer and IR sensors 	- 15	25
	2	Measurement Of Speed, Force And TorqueSpeed: Measurement of speed-moving iron and moving coiltype-AC and DC tachogenerators, photo electricpickup-stroboscopeForce: Measurement of force – Load cell, pneumatic andhydraulic load cell.Torque: Measurement of torque-Inductive principle and Digitalmethods.		
III	1	Biomedical instrumentation (Non Electrical Parameters Measurement And Diagnostic Procedures)- Measurement of blood pressure – Cardiac output – Heart rate – Heart sound – Pulmonary function measurements – spirometer –	15	25

		TOTAL	60	100
IV	2	SCADA Definition – elements of SCADA system – history of SCADA – remote terminal unit (RTU) – discrete control – analog control – master terminal unit – (MTU) – operator interface		
	1	Power Instrumentation Survey of methods of power generation :- hydro, thermal, nuclear, solar and wind power - Importance of instrumentation in power generation - Thermal power plant - Building blocks -Combined Cycle System - Combined Heat and Power System - sub critical and supercritical boilers	15	25
		Photo Plethysmography, Body Plethysmography – Blood Gas 82 analysers, pH of blood –measurement of blood pCO2, pO2, finger-tip oxymeter – ESR, GSR measurements.		

Text / Reference Books

- 1. Patranabis. D "Principles of Industrial Instrumentation", Tata McGraw Hill, 3rdEdition, New Delhi, Reprint 2010.
- 2. Krishnaswamy K.& Vijayachitra S., "Industrial Instrumentation" New age International, Reprint 2008.A.K.
- 3. Alan.S.Moris , "Principle of Measurement & Instrumentation", 2nd edition, Prentice Hall of India, 1990.
- 4. Doebelin, E.O.and Manik, D.N., Measurement Systems Application and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.
- 5. Patranabis, D. Principles of Industrial Instrumentation, 3rd Edition, Tata McGraw Hill, New Delhi, 2010.
- 6. David W. Spitzer, Industrial Flow Measurement; ISA-The Instrumentation, Systems, and Automation Society, 01-Jan-2005.
- 7. Leslie Cromwell, Biomedical Instrumentation and Measurement, Prentice hall of India, New Delhi, 2007.
- 8. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.
- 9. Rajput R.K., A Text book of Power plant Engineering. 5th Edition, Lakshmi Publications, 2013.

LABS / TUTORIALS FOR SEMESTER VII

VLSI DESIGN LAB				
Branch : EE	Sem: VII	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	Design and Simulation of various logic building blocks	
	using HDL language	

ADVANCED ELECTRONIC INSTRUMENTATION LAB					
Branch : EE	Sem: VII	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	
	Measuring various electrical parameters	
	Learning operation and applications of various	
	instruments Analyzing and testing various Advance	
	electrical Instruments	

ELECTIVE LAB I				
Branch : ENC/EE	Sem: VII	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
	Study and simulation and research paper supporting the	
	course elective l	

EMBEDDED AND IOT SYSTEMS LAB					
Branch : EE	Sem: VII	Practical Hrs: 2Hr	Credit: 2		
		•			

Sr. No	Detail Syllabus	
	Implementation of various embedded applications on PIC	
	microcontroller and 6811 TEXAS Simulator	

CONSUMER ELECTRONICS LAB				
Branch : ENC/EE	Sem: VII		Credit: 22	

Sr. No	Detail Syllabus	
	At least seven experiments/tutorials covering the whole	
	Consumer Electronics syllabus	

COMPUTER AND COMMUNICATION NETWORK

Branch : EE

Sem: VIII Lectures: 4 Hr

Credit: 4

Objective : On the completion of this course, student will be able to

- To understand the basic types of computer networks.
- To study the functionality of each network layer
- To have knowledge of the protocols for networking
- To learn different network security aspects

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weight age in %
	1	Introduction :- Uses of Computer networks, Network hardware, and Network software, Reference Models: OSI, TCP/IP.		
Ι	2	The Physical Layer :-Theoretical basis for data communication, Multiplexing, Transmission Media: Twisted pair, coaxial cable, optical fiber, wireless transmission etc., Switching: Circuit switching, Packet switching, X.25, Frame Relay.	15	25
	3	ATM, ISDN		
п	1	The Data Link Layer:-Design Issues Error detection and correction- hamming codes, CRC, bit stuffing, character stuffing etc. Elementary data link Protocols: A simplex Stop and Wait (Noiseless and Noisy channel) Sliding Window Protocols: 1 bit SWP, Go Back n protocol, Selective Reject protocol . High Level Data Link Control protocol (HDLC), PPP	15	25
	2	Algorithms: Leaky bucket algorithm, Token bucket algorithm		
ш	1	The Medium Access Sub-layer :-Multiple Access Protocols: ALOHA, CSMA, CSMA/CD, Wavelength Division multiple access, wireless LAN protocols. IEEE standards 802 for LANs, MANs etc.: IEEE 802.3, IEEE 802.4, IEEE 802.5, IEEE 802.11, IEEE 802.15, IEEE 802.15.4, High Speed LANs, Fast/Gigabit Ethernet.	15	25
	1	Transport Layer: -Study of TCP/IP suite, Design Issues, Brief		
IV	2	study of the Transport Layer and The Presentation Layer.Gateways and Application Layer Protocols: HTTP, DNS, and		25
		Total	60	100

Text Books /Reference Books:

- 1. Andrew S. Tannenbaum, "Computer Networks", 3rd Edition, PHI.
- 2. Larry Peterson & Davie, "Computer Networks- A systems approach", 3nd Edition, Harcourt India
- 3. William Stallings, "Data and Computer Communications", 6th Edition, Pearson Education Asia.

MANAGEMENT FOR INFORMATION AND COMMUNICATION TECHNOLOGY (Elective II) (4 modulewise suggestion)

Branch : EE	Sem: VIII	Lectures: 4 Hr	Credit: 4

Objective : On the completion of this course, student will be able to

- To help students prepare for careers in the ICT (Information & Communication Technologies) industry with skills required in today's workplace.
- Familiarizing with the Business eco system and ICT industry
- Understanding key business/management principles and concepts
- Understanding key business/management functions and processes
- Understanding how ICT enables Business
- Learning about Management Tools and techniques
- Familiarizing with popularly referred/adopted ICT industry frameworks and standards TMF, ITIL, PMP, PRINCE etc.
- Understanding basic business models in ICT Industry Hardware, Software, Services, Start-ups etc.

1	IT Business an Overview:- Business concepts - conventional	05	10
	business, knowledge based business Growth of Indian IT Business -		
	NASSCOM Report Basic types of IT Business - Products and		
	Services Different avenues of IT Business. Operations of IT Business		
	- onshore, offshore Business and environment - Economic, Political		
	and Social Ethics in Business Management Careers in Information		
	Technology		
2	Management for IT Professionals – an overview	05	10
	Management Concepts, Responsibility of Management Hierarchy of		
	Management, Management Approaches, Styles of Management		
	, Types of Management, Managerial Functions Role of Management		
	"Job of a Manager - Functional Management, General Management,		
	Project Management		
3	Relational Management Human Resource Management	05	10
	Role, Scope, Purpose and Importance of Human Resource		
	Management in IT, Human Resource Planning, Training &		
	Development Human Resource Allocation Performance, Appraisal		
	and Compensation Welfare.		
4	Managerial Economics and Financial Management Role, Scope,	05	10
	Purpose and Importance of Managerial Economics and Financial		
	Management in IT, Managerial Economic, Theory and types of costs,		
	Financial Management - Sources of Finance Financial Statements		
	Accounting		
5	Operation Management:- Role, Scope, Purpose and Importance of	05	10
	Operations Management in IT, Manufacturing v/s Service		
	Organizations, Manufacturing Systems.		
	ERP (Enterprise Resource Planning), SCM (Supply Chain		
	Management), CRM (Customer Relationship Management) Financial		
	Management, MRP (Material Requirement Planning)		
	Management of Excellence - Business Performance Excellence		
	Models – Malcolm Bald-ridge Award		
	Management Tools and Techniques		

	System Analysis, Forecasting and Prediction, Strategic Analysis, Decision Making, Problem Solving Techniques, ABC (Activity Based Coding), Financial Engineering, Business Process Re-engineering, Bench Marking, Six Sigma Bri Score Card		
6	Maintenance Management, Material Management, Total Quality	10	20
7	Management, Marketing Management	05	10
	 Project Management Role, Scope, Purpose and Importance of Project Management in IT. Meaning of Project and Project Management, Classification of Projects, Hierarchy of Projects, Project Life Cycle, Role and Responsibility of Project Manager Project Development – Project Formulation and Appraisal, Feasibility Study, Project Planning and Scheduling, Implementation and Control, Project Completion and Handover, Evaluation Project Management Body of Knowledge – An Overview Computer Based Project Management 	05	10
8	Management Information System Role, Scope, Purpose, Data and Information Producing, Characteristics value of Information. Characteristics, Importance, Requirements, Types, Identification, Designing, Planning and Implementation of Management Information System. Expert systems, Miscellaneous Management Systems	05	10
10	Introduction to RTI Act	05	10
	Total	50	100

Text Books /Reference Books

- 1. R.N. Nauhria, "Management of Systems", New Delhi Wheeler, 1998.
- 2. Business Management & Functions The ICFAI Business School.

Hardware Descriptive Languages (Elective II) (4 modulewise suggestion)						
Branch : EESem: VIIILectures: 4 HrCredit: 4						

Objective :On the completion of this course, student will be able to

- Understand the basics of HDL, VHDL and VERILOG
- Design digital circuits by using different description of digital circuits using verilog HDL, and VHDL
- Verify these Models and synthesizing RTL models to standard cell libraries and FPGAs.
- Students aim practical experience by designing, modeling, implementing and verifying several digital circuits.

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weightage in %
I	1	<u>Introduction</u> <u>Why HDL?</u> , <u>A Brief History of HDL, Structure of HDL</u> <u>Module, Operators, Data types, Types of Descriptions,</u> <u>simulation and synthesis, Brief comparison of VHDL and</u> <u>Verilog</u>		
	1	Data – Flow DescriptionsHighlightsofData-FlowDescriptions,StructureofData-FlowDescription,DataType – Vectors.		
Π	2	Behavioral DescriptionsBehavioral Description highlights, structure of HDLbehavioral Description, The VHDL variable –AssignmentStatement, sequential statements.		
	1	Structural Descriptions Highlights of structural Description, Organization of the structural Descriptions, Binding, state Machines, Generate, Generic, and Parameter statements.		
III	2	Procedures, Tasks, and Functions Highlights of Procedures, tasks, and Functions, Procedures and tasks, Functions. Advanced HDL Descriptions: File Processing, Examples of File Processing		
	1	<u>Mixed – Type Descriptions</u> <u>Why Mixed-Type Description? VHDL User-Defined Types,</u> <u>VHDL Packages, Mixed-Type Description examples</u>		
IV	2	Mixed –Language DescriptionsHighlights of Mixed-Language Description, How to invokeOne language from the Other, Mixed-language DescriptionExamples, Limitations of Mixed-Language Description.		
V	1	Synthesis BasicsHighlights of Synthesis, Synthesis information from Entityand Module, Mapping Process and Always in the HardwareDomain.		

	TOTAL	

Text / Reference Books

- 1. J Bhasker, "VHDL Primer", Addison Wesley
- 2. Douglas Perry, "VHDL", Tata McGraw HILL
- 3. William I. Fletcher, "An Engineering approach to Digital Design", Prentice Hall India.
- 4. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson Education, Second Edition.(Text1)
- 5. Nazeih Botros, "HDL programming VHDL and VERILOG" <u>https://books.google.co.in/books?id=L0PB2VWg7PgC&printsec=frontcover#v=onepage&</u> <u>q&f=false</u>
- 6. Thomas Moorby's, fifth edition "The verilog hardware description language"

WIRELESS AND MOBILE COMMUNICATION (Elective II)

Sem: VIII Lectures: 4 Hr

Credit: 4

Objective : On the completion of this course, students will be able to

- Learn the basics of wireless and mobile communication
- Understand the concept of Cellular radio system design, Various Multiple access schemes, Resource and mobility management
- Learn about Practical Cellular Systems

Modul	Sm		No. of	Weight
	SI.	Topic and Details	Lectures	age in
e no.	INU		assigned	%
		Introduction to Mobile communication:		
	1	Cellular mobile telephone architecture overview, Generations of		
т		Mobile Communication system	15	25
L		Cellular radio system design	15	23
	2	Frequency assignments, frequency reuse channels, concept of		
		cell splitting, Handover in cellular systems, Handoff algorithms		
		Multiple access schemes in mobile communication:-		
	1	TDMA, FDMA, CDMA, Random Multiple Access Schemes,		
п	1	Performance analysis issues, Interference suppression and power	15	25
11		control.	15	25
	n	Tele-traffic modeling and queuing theoretic analysis of cellular		
	Z	mobile networks, Resource allocation and mobility management.		
		Practical Cellular mobile systems- GSM system architecture		
	1	overview, Call management and system operation, CDMA (IS95)		
III		based cellular system.	15	25
	2	3G and 4G Systems : 3G system, CDMA2000 system ,		
	2	Architecture, UMTS technology, <u>3GPP LTE</u>		
	1	Wireless Personal Area Network, Bluetooth, Zigbee, Wireless		
		LAN, Architecture and standards,		
IV		Adnoc and Sensor Networks: Characteristics of MANETS,	15	25
	2	Table driven and source initiated. On demand routing protocols,		
		hybrid protocols, Wireless sensor networks classification, MAC		
		and routing protocols.		
		TOTAL	60	100

Text /Reference Books

- 1. Rappaport "Wireless communication", 2nd Edition, Pearson Education, 2010.
- 2. W. Lee. "Mobile Cellular Telecommunication Systems", 2nd edition, Mc Graw Hill 1995.
- 3. V. K. Garg and J.E Wilkes, "Wireless and Personel Communication Systems" PHI 2014.
- 4. Wireless communication and Networking-Vijay Garg, ELSEVIER Inc. Video Demisified, 2014.
- 5. Kelth jack, Penram International Publication.
- 6. Next Generation Wireless Systems and Networks: Hsiao . Hwa Chen, Mohsen Guizani . Wiley.

- 7. Essentials of UMTS: Christopher Cox.
- 8. Wireless communication and Networking-William Stallings, 2nd edition, Pearson/Prentice Hall Publication, 2012.

ROBOTICS (Elective II)							
Branch : EE	Sem: VIII	Lectures: 4 Hr	Credit: 4				
Objective : On the completion of th	Objective • On the completion of this course, students will be able to						

Understand the basics of Robotics along with its kinematics

- Learn about Static analysis, Path Planning, Dynamics and control
- Get the knowledge of multiple robot-machine interfacing

Module No.	Sr. No.	Topic and Details	No. of Lectures assigned	Weight age in %
	1	Introduction: Definition and origin of robotics - different types of Industrial robotics – various generations of robots - degrees of freedom - Asimov's laws of robotics – dynamic stabilization of robots-Standard Robot configuration and construction.		
I	Power Sources And SensorsHydraulic, pneumatic and electric drives - pneumatic manipulator control circuits. Determimotor and gearing ratio - variable speed arran determination - micro machines in robotics - m ranging - laser - acoustic - magnetic, fiber o sensors	Power Sources And Sensors Hydraulic, pneumatic and electric drives - electronic and pneumatic manipulator control circuits. Determination of HP of motor and gearing ratio - variable speed arrangements - path determination - micro machines in robotics - machine vision - ranging - laser - acoustic - magnetic, fiber optic and tactile sensors.	15	25
П	1	Robot Kinematics Mathematical representation of Robots - Position and orientation – Homogeneous transformation-Various joints- Representation using the Denavit Hattenberg parameters -Degrees of freedom-Direct kinematics-Inverse kinematics-PUMA560 & SCARA robots- Solvability – Solution methods-Closed form solution.	15	25
	2	Manipulator Differential Motion And Statics Linear and angular velocities-Manipulator Jacobian-Prismatic and rotary joints–Inverse -Wrist and arm singularity - Static analysis - Force and moment Balance.		
	1	Robot End Effectors End Effectors, Tools and Grippers-Gripper design and Gripper force.		
III	2	Path PlanningDefinition-Jointspacetechnique-Useofp-degreepolynomial-Cubicpolynomial-Cartesianspacetechnique-Parametricdescriptions-Straightlineandcircularpaths-Positionandorientationplanning	15	25
IV	1	Dynamics And ControlLagrangian mechanics-2DOF Manipulator-Lagrange Eulerformulation-Dynamic model –Manipulator controlproblem-Linear control schemes-PID control scheme-Forcecontrol of robotic manipulator.Case Studies	15	25
	2	Case Studies		

Multiple robots - machine interface - robots in manufacturing and nonmanufacturing application - robot cell design - selection of a robot.		
TOTAL	60	100

Text / Reference Books

- 1. R. K. Mittal and I. J. Nagrath, "Robotics and Control", Tata McGraw Hill, New Delhi, 4th Reprint, 2005.
- 2. JohnJ. Craig , "Introduction to Robotics Mechanics and Control", Third edition, Pearson Education, 2009.
- 3. M.P.Groover, M.Weiss, R.N. Nageland N. G.Odrej, "Industrial Robotics", McGraw-Hill Singapore, 1996.
- 4. Mikell. P, Weiss .G.M, Nage.l R.N and Odraj .N.G, "Industrial Robotics", McGraw Hill Singapore, 1996.
- 5. Ghosh, "Control in Robotics and Automation: Sensor Based Integration", Allied Publishers, Chennai, 1998.

LABS / TUTORIALS FOR SEMESTER VIII

COMMUNICATION NETWORK LAB				
Branch : EE	Sem: VIII	Practical Hrs: 2Hr	Credit: 2	

Sr. No	Detail Syllabus	
1	Study and simulation of various networking algorithms at	
	various layers.	

ELECTIVE LAB II					
Branch : EE	Sem: VIII	Practical Hrs: 2Hr	Credit: 2		

Sr. No	Detail Syllabus	
1	Study and simulation and research paper supporting the	
	course elective II	

PROJECT				
Branch : ENC/EE	Sem: VII AND VIII		Credit: 22	

Sr. No	Detail Syllabus	
1	Undertaking the development of projects based on latest	
	technology related to the course covered in previous	
	semesters leading to development of new	
	product/concept/idea which can be published in referred	
	journals/conferences	